
PHYSICAL REVIEW E 106, 065303 (2022)

Machine-learning-based data-driven discovery of nonlinear phase-field dynamics

Elham Kiyani,1,2 Steven Silber ,2,3 Mahdi Kooshkbaghi ,4 and Mikko Karttunen 2,3,5

1Department of Mathematics, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 5B7
2The Centre for Advanced Materials and Biomaterials (CAMBR), The University of Western Ontario, 1151 Richmond Street, London,

Ontario, Canada N6A 5B7
3Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 3K7

4Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
5Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 5B7

(Received 3 August 2022; accepted 15 November 2022; published 9 December 2022)

One of the main questions regarding complex systems at large scales concerns the effective interactions and
driving forces that emerge from the detailed microscopic properties. Coarse-grained models aim to describe
complex systems in terms of coarse-scale equations with a reduced number of degrees of freedom. Recent
developments in machine-learning algorithms have significantly empowered the discovery process of governing
equations directly from data. However, it remains difficult to discover partial differential equations (PDEs) with
high-order derivatives. In this paper, we present data-driven architectures based on a multilayer perceptron, a
convolutional neural network (CNN), and a combination of a CNN and long short-term memory structures for
discovering the nonlinear equations of motion for phase-field models with nonconserved and conserved order
parameters. The well-known Allen-Cahn, Cahn-Hilliard, and phase-field crystal models were used as test cases.
Two conceptually different types of implementations were used: (a) guided by physical intuition (such as the
local dependence of the derivatives) and (b) in the absence of any physical assumptions (black-box model). We
show that not only can we effectively learn the time derivatives of the field in both scenarios, but we can also
use the data-driven PDEs to propagate the field in time and achieve results in good agreement with the original
PDEs.

DOI: 10.1103/PhysRevE.106.065303

I. INTRODUCTION

Partial differential equations (PDEs) are widely used in
modeling of complex physical, chemical, and biological sys-
tems including fluid dynamics, chemical kinetics, population
dynamics, and phase transitions. The study of PDEs in the
context of machine learning (ML), broadly speaking, falls into
two categories: (i) solving PDEs and (ii) predicting unknown
PDEs from data [1–7]. In simulations of phase-field and
reaction-diffusion models, commonly used numerical tech-
niques are based on time and space discretization, such as
finite-difference and finite-element methods. In recent years,
a third approach based on ML has emerged with promising
results for solving and even discovering unknown PDEs from
data; see, for example, Ref. [8] and references therein.

The core idea for using ML algorithms to solve PDEs is
representing the residuals of PDEs as a loss function of a
neural network (NN) where the loss function is minimized; a
loss function measures how far the predicted values are from
their true values. This approach does not require discretization
or meshing, which is beneficial when dealing with problems
of high dimensions and/or complex geometries [1,2,9]. Since
most deep learning frameworks are based on automatic differ-
entiation, these methods are known as mesh-free approaches
[10].

In the case of discovering unknown PDEs from data, the
key idea of ML-based approaches is to estimate the time

derivative of the desired (dependent) quantity. These ap-
proaches can be broadly categorized as follows:

(a) An ensemble of macroscopic observations is available,
and there is knowledge about the physics of the governing
coarse PDE(s). The typical knowledge is that the time evo-
lution of the field of interest depends on the field and its
derivatives (e.g., Navier-Stokes equations). One can design
the ML algorithm to find that dependency. This relation can be
formulated based on any of the following methods: (i) Linear
dependence of the field evolution using a dictionary of spatial
derivatives with unknown coefficients [11,12]; (ii) nonlinear
dependence with black-box inference [7]; (iii) nonlinear de-
pendence using a selective dictionary of spatial derivatives,
which were found by other data-driven approaches [13]; (iv)
nonlinear dependence where spatial derivatives are informed
by the memory (history) of the system using a feedback
loop, e.g., recurrent neural network (RNN) together with long
short-term memory (LSTM) and gated recurrent unit (GRU)
[14–16].

(b) An ensemble of microscopic observations is available,
and the macroscopic field of interest is known. For exam-
ple, the microscopic solutions of the Boltzmann equation are
available and one is looking for the time evolution of coarse
fields such as density, velocity, or temperature. Again, one can
assume that the time evolution of the field depends on the
spatial derivatives using physical intuition [13,17].

2470-0045/2022/106(6)/065303(14) 065303-1 ©2022 American Physical Society

https://orcid.org/0000-0002-4983-6963
https://orcid.org/0000-0002-6344-7382
https://orcid.org/0000-0002-8626-3033
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.106.065303&domain=pdf&date_stamp=2022-12-09
https://doi.org/10.1103/PhysRevE.106.065303

ELHAM KIYANI et al. PHYSICAL REVIEW E 106, 065303 (2022)

(c) An ensemble of microscopic observations is available,
but the macroscopic field is unknown. Therefore, the first step
is to discover the coarse-grained field, which is generally for-
mulated as a model reduction problem [18]. The second step
is to find the PDE(s) for the coarse variable(s). For example,
Thiem et al. determined an order parameter for coupled oscil-
lators using diffusion maps and the corresponding governing
PDE using a Runge-Kutta network [19].

In this paper, we explore ML-based approaches which fall
under the first category mentioned above. We assess two sce-
narios:

(i) There is an unknown relation between field evolution
and its spatial derivatives.

(ii) The spatial derivatives, their orders, and combinations
are unknown (there is no spatial derivative dictionary).

Afterwards, we also solve the predicted PDEs in time
and space. We should note that by discovering PDEs, we
are referring to finding the aforementioned unknown rela-
tion implicitly. For the first scenario, a flexible framework
that can deal with large datasets and extract the unavailable
PDE(s) from coarse-scale variables implicitly is developed.
Two different approaches are presented for learning coarse-
scale PDEs: (i) a multilayer perceptron (MLP) architecture,
and (ii) a convolutional neural network and long short-term
memory (CNN-LSTM). Since LSTM only passes time infor-
mation to its layers and misses the spatial features of previous
time steps, CNN can be used to learn and detect the spatial
features of the inputs [20,21]. For the second scenario, a con-
volution operator is used to implicitly learn the dependence
of the time derivative of the field on the spatial derivative(s)
of unknown orders. The learned PDE is then marched in time
with a time-integrator.

We demonstrate the capability of the above algorithms to
learn PDEs using data obtained from phase-field simulations
of the well-known Allen-Cahn [22], Cahn-Hilliard [23], and
the phase-field crystal (PFC) [24,25] models using the open
source software SymPhas [26].

The rest of this article is organized as follows. A brief
summary of the phase-field approach and data preparation is
presented in Sec. II. In Sec. III, an overview of MLP and
CNN-LSTM networks as two data-driven approaches which
learn PDEs with a spatial derivatives dictionary is presented.
Finally, in Sec. IV, we introduce a CNN network that learns
PDEs without any assumption regarding spatial derivatives.
Then, the solutions of the original and data-driven PDEs are
compared. The tensorflow2 framework [27] was used to
implement and train our networks throughout this paper.

II. PHASE-FIELD MODELING

A. Phase-field modeling in a nutshell

Phase-field modeling provides a theoretical and computa-
tional approach for simulating nonequilibrium processes in
materials, typically with the objective of studying the dy-
namics and structural changes. For an excellent overview of
phase-field modeling, see the book by Provatas and Elder
[28]. In its essence, phase-field modeling is a coarse-grained
approach that uses continuum fields to describe slow variables
such as concentrations. The continuum fields are given by

order parameters, which may be conserved or nonconserved.
In this work, we consider only systems described by a single
order parameter U ≡ U (�x, t). In all of the descriptions below,
we use the conventional dimensionless units [28].

The equations of motion for the nonconserved and con-
served order parameters are (see Ref. [28] for a more detailed
discussion) given as

∂U

∂t
= −�

δF

δU
(nonconserved), (1)

∂U

∂t
= �∇2 δF

δU
(conserved), (2)

where F is a free-energy functional and δ/δU is a functional
derivative. We have neglected thermal noise from the above
equations. The parameter � is a generalized mobility that is
assumed to be constant, and is chosen based on a particular
phase-field model. The free-energy functional typically has
the form

F =
∫

d�x[| �∇U |2 + f (U)], (3)

where f (U) is a bulk free energy with a double-well potential,
which for this work we set to be

f (U) = a4

4
U 4 + a2

2
U 2. (4)

It is also noteworthy that when no free-energy functional is
available, the equations of motion are often postulated. This
is the case with reaction-diffusion systems, for example the
well-known Turing [29,30] and Gray-Scott models [30,31].
Phase-field models have been widely applied to various types
of systems and phenomena, including dendritic and direc-
tional solidification [32–34], crystal growth [24,35–37], and
magnetism [38], as well as for phenomena such as fracture
propagation [39,40] to mention some examples.

B. Phase-field models used in the current work

We employed three different well-studied single order-
parameter phase-field models: (i) the Allen-Cahn model [22]
for the case of a nonconserved order parameter, (ii) the
Cahn-Hilliard model [23] for the conserved order parameter,
and (iii) the phase-field crystal (PFC) model [24] that has a
conserved order parameter and generates a modulated field
that describes atomistic length scales and diffusive times. In
addition to being well-studied, these models were chosen be-
cause they contain differing orders of spatial derivatives: the
Allen-Cahn model is described using a second-order deriva-
tive, the Cahn-Hilliard model is described using a fourth-order
derivative, and the PFC model is described using a sixth-
order derivative. Moreover, they each exhibit various spatial
patterns that evolve according to different timescales.

1. The Allen-Cahn model

The Allen-Cahn model, a dynamical model for solidi-
fication originally developed by Allen and Cahn in 1972,
has a single nonconserved order parameter corresponding to
Eq. (1), and it is defined using the free energy of Eq. (3). The

065303-2

MACHINE-LEARNING-BASED DATA-DRIVEN DISCOVERY … PHYSICAL REVIEW E 106, 065303 (2022)

TABLE I. The simulations were done on a uniformly discretized two-dimensional grid of size nx × ny and �x = �y = 1. The simulations
use a time step of �t and continue to time t . All models use periodic boundary conditions, and initial conditions are populated using a uniform
random distribution with values between −1 and 1 generated using the Mersenne Twister 19937 generator from the C++ standard library
[44]. Additionally, all constants in the equations of motion are set to 1 except for ε used in the PFC model, which is set to 0.1. Later, in
our phase-field equations discovery, we used training sets with 60% (for MLP and CNN-LSTM) and 80% (for CNN) of the total snapshots
(nk = 0.6nt or nk = 0.8nt).

Phase-field model nx × ny �t t nt Equation parameters

Allen-Cahn, Eq. (5) 256 × 256 0.1 20 100 M = a2 = a4 = 1
Cahn-Hilliard, Eq. (6) 128 × 128 0.01 20 100 D = a2 = a4 = 1
PFC, Eq. (8) 128 × 128 0.05 100 200 q0 = 1 and ε = 0.1

equation of motion is then given as

∂U

∂t
= −M(∇2U + a2U − a4U

3), (5)

where � is set to M [see Eq. (1)], a constant related to chem-
ical mobility. The numerical values of the parameters M, a2,
and a4 are given in Table I. Equation (5) represents a physical
system that evolves purely due to a chemical potential. It is
also called Model A according to the Hohenberg and Halperin
classification of phase-field models [41].

2. The Cahn-Hilliard model

The Cahn-Hilliard model, formulated by Cahn and Hilliard
in 1958, represents spinodal decomposition. It is a conserved
order parameter model corresponding to Eq. (2). Applying the
free-energy density of Eq. (3) then gives

∂U

∂t
= D∇2(∇2U + a2U + a4U

3), (6)

where � is set to D [see Eq. (2)], a constant that represents
the diffusion constant. The parameters D, a2, and a4 are given
in Table I. Equation (6) is also known as Model B in the
Hohenberg and Halperin classification [41].

3. Phase-field crystal model

A free-energy density to describe a crystal lattice at an
atomistic scale incorporating elastic effects into a phase-field
model was originally developed by Elder et al. [24,25]. The
PFC free-energy functional is minimized by a hexagonal pe-
riodic lattice, and it can be defined [42] as

F (U) =
∫

d�x
[

U 3

3
+ U 4

4
+ U ((q0 + ∇2)2 − ε)

U

2

]
, (7)

where q0 and ε are constants. The equation of motion with a
conserved order parameter is then determined using Eq. (2)
with � = 1 as

∂U

∂t
= ∇2[U 2 + U 3 + ((q0 + ∇2)2 − ε)U]. (8)

The order parameter, U , represents the mass density. The PFC
model can be used to describe elastic and plastic deforma-
tions in isotropic materials, i.e., crystal structures. The lattice
structure can assume any orientation (based on the initial con-
ditions), and interactions between grains (individual crystal
structures) can lead to defects and dislocations.

C. Simulation of phase-field models

The open-source SymPhas [26] software package was used
to numerically simulate the above three systems. SymPhas
allows the user to define phase-field models directly from
their PDE formulations, and control simulation parameters
from a single configuration file. All simulations were done
using dimensionless units [28]. In terms of the numerical
solution, SymPhas has the ability to simulate models using
either explicit finite-difference methods or the semi-implicit
Fourier spectral method. The latter was chosen. By virtue of
its excellent error properties, the Fourier semi-implicit spec-
tral method typically allows for larger time stepping than
a finite difference solver [43]. For each of the models, five
independent simulations with 100 frames of the field U were
saved at equally spaced intervals. Parameters for the numeri-
cal simulations are summarized in Table I. For models A and
B, the simulation is stopped after the fast growth regime, and
the universal scaling of the system takes effect. The simulation
of the PFC model was chosen to stop after approximately 10
diffusion times in order to be well within the regime where
the number of defects is slowly decreasing [24]. To illustrate
the different dynamics of each model, snapshots at the end of
each simulation are provided in Fig. 1.

III. DATA-DRIVEN PDEs WITH A SPATIAL
DERIVATIVES DICTIONARY

As already discussed above, we consider two distinct types
of methods for discovering PDEs from data, assuming the
network is informed by spatial derivatives either explicitly or
implicitly. In the first method, an MLP network is used to learn
a function FMLP that can be formulated as

Ut (t, x, y) = FMLP(U (t, x, y),Ux (t, x, y),Uxx (t, x, y),

× Uy(t, x, y),Uyy(t, x, y), . . .), (9)

where Ut (t, x, y) is the time derivative, and
Ux(t, x, y), Uxx(t, x, y), Uy(t, x, y), and Uyy(t, x, y) are
the first and second spatial derivatives with respect to x and y,
respectively.

In the second method, extending LSTM to a convolutional
structure (CNN-LSTM) is used to learn an equation from local
variables without giving spatial derivatives explicitly. Mathe-
matically, the network learns the time derivative Ut (t, x, y) as
a function of local macroscopic variables on a small square

065303-3

ELHAM KIYANI et al. PHYSICAL REVIEW E 106, 065303 (2022)

FIG. 1. Snapshots from the three phase-field models. Field solutions for the Allen-Cahn model [Eq. (5)] are shown on the left at t = 20,
those for the Cahn-Hilliard model [Eq. (6)] are shown in the center at t = 20, and those for the PFC [Eq. (8)] are shown on the right at
t = 100. The longer simulation time of the PFC model is required to allow the number of initial defects to decrease [24]. The parameters of
the numerical simulations are presented in Table I. The vertical and horizontal axes display x = nx and y = ny, respectively, and U represents
the phase-field for the corresponding model, all in dimensionless units.

around each grid point,

Ut (tk, xi, y j) = FCNN-LSTM(U (tk, xi−1, y j),U (tk, xi, y j),

× U (tk, xi+1, y j),U (tk, xi, y j−1),

× U (tk, xi, y j+1)), (10)

where U (tk, xi−1, y j), U (tk, xi, y j), U (tk, xi+1, y j),
U (tk, xi, y j−1), and U (tk, xi, y j+1) are the field values at
the positions xi−1, xi, xi+1, y j−1, and yi+1, respectively, and tk
corresponds to the time of the snapshots used in the training
set for 1 � k � nk .

128 nodes

64 nodes

16 nodes

8 nodes

FIG. 2. Schematic of the general steps in discovery of PDEs with a spatial derivatives dictionary. Learning of PDEs from spatial derivatives
and local values of coarse variables using two different approaches, (a) MLP and (b) CNN-LSTM. Coarse-scale variables are collected as
snapshots from the phase-field simulations. We used a 60:20:20 ratio to randomly choose the training, validation, and test sets. Finite-difference
methods are used to approximate the spatial derivatives, which are fed into panel (a) the MLP network according to Eq. (9). The network
connecting the input layer consists of a list of input features (the field U and its spatial derivatives) to the output layer of a single neuron
(time derivative Ut). The values of the macroscopic field U evaluated around each grid point are fed through the panel (b) CNN-LSTM
network to learn PDEs of the form Eq. (10). CNN-LSTM network connecting the input layer consists of a list of input features [local variables
U (tk, xi−1, y j),U (tk, xi, y j),U (tk, xi+1, y j),U (tk, xi, y j−1),U (tk, xi, y j+1) for 1 � k � nk , 1 � i � nx , and 1 � j � ny] to the output layer of a
single neuron Ut . Here nk is the number of snapshots used for training, which is a random set of nt with size nk = 0.6nt . The corresponding
values for nt , nx , and ny are summarized in Table I.

065303-4

MACHINE-LEARNING-BASED DATA-DRIVEN DISCOVERY … PHYSICAL REVIEW E 106, 065303 (2022)

TABLE II. MLP architecture for discovering phase-fields given
in Eqs. (5), (6), and (8) consists of four dense layers with
128/64/16/8 neurons in each layer. The network was trained with a
learning rate of 10−3 for 2000 epochs. For each dataset, nt snapshots
were randomly split into training, validation, and test with a 60:20:20
ratio (the training set has nk snapshots with a size of 0.6nt for each
dataset).

Networks Layers Neurons Activation functions

MLP four dense layers 128/64/16/8 ReLU

A schematic diagram of our framework for discover-
ing PDEs with spatial derivatives dictionary is shown in
Fig. 2. Specifically, it shows how the spatial derivatives
(U,Ux,Uy,Uxx,Uyy, . . .) and the local macroscopic variables

(Ui−1, j,Ui, j,Ui+1, j,Ui, j−1,Ui, j+1) are fed through the MLP
[Fig. 2(a)] and CNN-LSTM [Fig. 2(b)], respectively, to learn
the time derivative Ut (t, x, y).

A. Multilayer perceptron network
architecture and performance

An MLP is an example of a typical feedforward artificial
neural network, consisting of a series of layers. Each layer
calculates the weighted sum of its inputs and then applies an
activation function to get a signal that is transferred to the next
neuron [45].

In our MLP network, the number of layers, neurons,
and the type of activation functions for each phase-field
model were found by trial and error. We approximate
spatial derivatives of the coarse variable U by finite dif-
ferences, and along with U itself, we feed this to the

FIG. 3. Performance of the MLP network for predicting time derivatives of phase-fields given by Eqs. (5), (6), and (8). Allen-Cahn, Eq. (5),
as well as Cahn-Hilliard, Eq. (6), were plotted at t = 20, and PFC, Eq. (8), was drawn at t = 100. The left column shows Ut , the time derivative
computed from the numerical solution generated by SymPhas [26], and the center column shows Ût , the learned time derivative. The right panel
shows the difference between Ut and Ût , as well as the corresponding rMSE value for each phase-field model.

065303-5

ELHAM KIYANI et al. PHYSICAL REVIEW E 106, 065303 (2022)

MLP network to learn the function FMLP in Eq. (9).
The MLP architecture for learning the Allen-Cahn model
[Eq. (5)] is shown in Fig. 2(a) as an example. The five
inputs U (t, x, y), Ux(t, x, y), Uxx(t, x, y), Uy(t, x, y), and
Uyy(t, x, y) are passed to the first hidden layer, which is con-
nected to the layers with 128/64/16/8 neurons each. In the
output layer, we use a dense layer with a single neuron to
predict Ut . The network is trained for 2000 epochs using the
ADAM optimizer [46], rectified linear unit (ReLU) activation
function [47], and mean-squared error (MSE) as the loss func-
tion (see Table II). For all three phase-field models, the same
architecture has been used. For the Cahn-Hilliard [Eq. (6)]
and PFC [Eq. (8)] models, we used spatial derivatives up to
fourth and sixth order for the input layers, respectively.The
performance of the MLP network on learning the models is
shown in Fig. 3. The root-mean-squared error (rMSE) is the
square root of MSE calculated as

MSE = 1

nx × ny

nx×ny∑
i=1

(
U i

t − Û i
t

)2
. (11)

As shown in Fig. 3, the rMSE values are small (∼10−2),
indicating that the target time derivatives (Ût) learned by the
proposed MLP network are close to the true ones for all three
models.

B. Convolution and long short-term memory network
architecture and performance

One of the main challenges in approximating coarse-
scale PDEs is the estimation of spatial derivatives. While
in previous studies PDEs have been successfully identified
by learning time derivatives as a function of the estimated
spatial derivatives, approximating derivatives remains chal-
lenging [48,49]. Generally, the choice of the grid size is one
of the most important considerations in numerical differenti-
ation. While large step sizes can increase simulation speed,
steps that are too large can create instabilities. On the other
hand, if the steps are too small, numerical errors can dominate
and the derivatives are of no use. Accordingly, the question
that arises in discovering PDEs is the accuracy of numerical
differentiation that has been used for training.

Unlike an MLP, CNN-LSTM is capable of automatically
learning time derivatives from coarse-scale values. Using a
combination of convolutional layers with other network struc-
tures for data-driven differential equations is an active field of
research (see, for example, Refs. [50,51]). CNNs are widely
used for image classification, and there have been several
breakthroughs in image recognition with performance close to
that of humans [52]. The CNN architecture can progressively
extract higher level representations (color, shape, topology,
etc.) of an input feature (image) and learn the dependency
of the output (mostly a single class label) on those repre-
sentations. The convolution operation sweeps a filter across
the entire input field and extracts the global features and lo-
cal (pixel-to-pixel) variations. The convolutional layer can be
considered as an efficient implementation of the convolution
operator, hence representing approximations of (potentially
high order) derivatives of a scalar field. The relationship be-

TABLE III. Details of the CNN-LSTM network used for field
equation discovery. The network is trained for 2000 epochs with a
learning rate 10−3. nt snapshots for each dataset are randomly split
with 60:20:20 ratio for training, validation, and test (the training set
has nk snapshots with size 0.6nt for each dataset).

Kernel Pool
Layers Structure Units Filter size size Activation

0 Input 1
1 Conv1D 64 3 ReLU
2 Time distributed
3 MaxPooling1D 2
4 Time distributed
5 LSTM 80 ReLU
6 Dense 10 ReLU
7 Dense 5 ReLU
8 Dense (output) 1 Linear

tween the convolution-differentiation and derivatives-order of
filters has been discussed in detail by Cai and Dong [53,54].

A schematic diagram of the proposed CNN-LSTM ar-
chitecture is shown in Fig. 2(b). The architecture consists
of two subnetworks: (i) A CNN subnetwork, including one-
dimensional convolution and maxpooling layers for feature
extraction from input data, and (ii) a LSTM subnetwork
including sequential layers followed by one LSTM layer
and two dense layers with ReLU activation. We feed the
CNN-LSTM network (see Table III) with the five local coarse-
scale variables, U (tk, xi−1, y j), U (tk, xi, y j), U (tk, xi+1, y j),
U (tk, xi, y j−1), U (tk, xi, y j+1) tuple for 1 � k � nk , 1 � i �
nx, and 1 � j � ny for all phase-field models. Although we
have second-, fourth-, and sixth-order equations, CNN-LSTM
training can be performed with only five local points (men-
tioned above). Due to CNN’s ability to extract spatial features
from inputs, CNN-LSTM shows that increasing training of
local points has no impact on performance. Here nk corre-
spond to 60% of the original datasets, which is randomly
selected for training. These coarse-scale variables at each grid
point are fed into the CNN subnetwork, and the output of the
convolutional layer passes through the LSTM layer followed
by a dense layer to provide the output. The output of the
network is the single neuron approximating Ut (t, x, y) at each
grid point.

The LSTM network consists of a cell state that is the
core concept of LSTM networks and memory blocks. Each
block is composed of gates that can make decisions about
which information passes through the cell state and which
information can be removed. There are three kinds of gates:
(i) input, (ii) output, and (iii) forget gate. Each memory block
in an LSTM architecture has an input and an output gate
which control information coming into the memory cell and
information going out to the rest of the network, respectively.
In addition, an LSTM architecture has a forget gate that con-
tains an activation function and allows the LSTM to keep or
forget information. Information from the previous hidden state
and information from the current input is passed through the
activation function. The output of each gate is a value between
0 (block the information) and 1 (pass the information) [55,56].

065303-6

MACHINE-LEARNING-BASED DATA-DRIVEN DISCOVERY … PHYSICAL REVIEW E 106, 065303 (2022)

FIG. 4. CNN-LSTM predictions for (a) the Allen-Cahn Eq. (5) at t = 20, (b) the Cahn-Hilliard Eq. (6) at t = 20, and (c) the PFC Eq. (8)
at t = 100. Actual and learned time derivatives Ut and Ût are shown in the left two panels. The difference between the predicted and the actual
time derivatives as well as rMSE are presented in the right panel.

In our setup, the network consists of a convolutional layer
(Conv1D) with 64 filters before a pooling layer, kernel size 3
followed by an LSTM layer with 80 neurons. There are two
dense layers (fully connected) with 10 and 5 neurons each.
Data have been reshaped to one dimension before training
the network. The performance of the trained CNN-LSTM
network is shown in Fig. 4. In the left two panels, contours of
Ut and Ût for the test sets and the corresponding predictions by
CNN-LSTM are compared. The snapshots of the differences

between the true value and the predictions of the CNN-LSTM
at time steps t = 100 are shown in the right panels, where
rMSE is also reported for each phase-field model. A slight
error can be observed along sharp boundaries in some isolated
grid points, indicating CNN-LSTM does not identify smaller
features in the field. Compared to true phase-field simulations,
the spatial gradient of phase concentration is not as sharp.
Similar behavior has been reported in other studies; see, e.g.,
Ref. [57]. The prediction errors from CNN-LSTM remain

065303-7

ELHAM KIYANI et al. PHYSICAL REVIEW E 106, 065303 (2022)

FIG. 5. Comparisons between MLP and CNN-LSTM performance using the phase-field Eqs. (5), (6), and (8). In each plot, the horizontal
axis indicates x = nx and the vertical axis represents the time derivative Ut and Ût predicted by MLP and CNN-LSTM for each phase-field
model. Two MLP and CNN-LSTM networks are trained and tested on the same datasets.

unchanged, and an rMSE ∼10−2 is obtained for all three
models.

C. Hyperparameter study

A comparison of regression results over the selected pre-
diction period obtained by MLP and CNN-LSTM is shown
in Fig. 5. One can clearly see the ability of both MLP and
CNN-LSTM to accurately reproduce the original data and
make predictions of the phase-field models.

We used the coefficient of determination, R2, to compare
the performance of the networks,

R2 = 1 −
∑nx×ny

i=1

(
U i

t − Û i
t

)2

∑nx×ny

i=1

(
U i

t − Ut
)2 , (12)

where Ut is the mean value of the time derivative for a single
snapshot. Root mean squares and R2 scores can be affected
by different hyperparameters such as learning rate, number of
training epochs, and network depth and width. Here, we study
the effect of adding/removing MLP and convolutional layers,
while all the other parameters are fixed.

Figure 6(a) shows the effect of adding layers to our MLP
architecture. An MLP network with one layer consisting of
64 hidden neurons is expanded to a network with two and
three layers with 128, 64 and 256, 128, 64 hidden neurons,
respectively. It can be seen that adding hidden layers reduces
the rMSE and increases the performance of prediction. Fig-
ure 6(b) presents the effect of adding CNN and LSTM layers
to the CNN-LSTM. Here, we use a single LSTM layer with
two configurations for CNN layers: (i) a single CNN layer
with output filters of size 64, (ii) two CNN layers with 128,

FIG. 6. Effect of changing MLP and CNN-LSTM architectures on rMSE and R2. (a) rMSE values obtained by three different MLP
architectures. (b) rMSE values obtained by three different CNN-LSTM architectures. (c) R2 values for the test set calculated by Eq. (12)
reported for three different MLP and CNN-LSTM architectures.

065303-8

MACHINE-LEARNING-BASED DATA-DRIVEN DISCOVERY … PHYSICAL REVIEW E 106, 065303 (2022)

FIG. 7. Trace of MSE and MAE [see Eqs. (11) and (13)] errors for MLP and CNN-LSTM networks. The blue and green lines represent
the errors on the training sets as a function of epochs, and the orange and red lines correspond to the errors on the validation sets. Learning
curves show that the training and validation curves are very similar for both MSE and MAE errors and they decrease to a point of stability.

64 output shape as well as two LSTM layers with 128, 64
neurons followed by two CNN layers with 128, 64 output
sizes. Adding convolutional layers increases the performance.
However, MLP networks are more sensitive to the choice of
architecture than the CNN-LSTM networks. Moreover, the
computational cost of training a multilayer CNN-LSTM is
huge compared to a single layer and should be taken into
account for large-scale data. It can be roughly concluded
that the optimal number of LSTM and CNN layers is 1 in
our CNN-LSTM network. Conversely, the R2 values show
less sensitivity to the structural changes in our proposed neu-
ral networks, particularly in the CNN-LSTM network [see
Fig. 6(c)].

To further study the dynamics of the optimization process
(training models), the MSE and mean absolute error (MAE)
as a function of epochs are given in Fig. 7. The MAE is the
difference between the original and predicted values. This
is calculated by averaging the absolute difference over the
dataset, and it is expressed as

MAE = 1

nx × ny

nx×ny∑
i=1

∣∣U i
t − Û i

t

∣∣. (13)

To achieve sufficiently small error, we trained networks for
2000 epochs with a batch size of 64. However, using approxi-
mately 500 epochs (e.g., early-stopping [58]) seems adequate
for achieving optimal results, particularly for the Allen-Cahn
and the Cahn-Hilliard models. Since training CNN-LSTM
networks is computationally expensive, using smart early-
stopping approaches can help in cases of large data PDE
learning tasks.

IV. DATA-DRIVEN PDEs WITHOUT SPATIAL
DERIVATIVES DICTIONARY

In this section, we reformulate the problem of learning
PDEs as black-box supervised learning tasks, using convolu-
tional neural network architecture where there is no selection
of spatial derivatives and the field U is the only input to our
deep learning model. The mathematical representation of a
data-driven PDE learning task with the CNN is

Ut (t, x, y) = FCNN(U (t, x, y)),

× FCNN : Rnx×ny → Rnx×ny , (14)

where nx and ny are the number of grid points in the x- and y-
directions, respectively. We use U from our phase-field model
simulations to train the CNN. After successful training of the

FIG. 8. The proposed CNN architecture. The input and output of the CNN are the U and Ut fields, respectively. Input passes through
several convolution (conv), batch normalization (bn), max pooling (mp), and up-sampling (up) layers. All the relevant parameters of the
network architecture are described in Sec. IV A.

065303-9

ELHAM KIYANI et al. PHYSICAL REVIEW E 106, 065303 (2022)

TABLE IV. A CNN network used for discovering field equa-
tions without spatial derivatives. This network is trained for 20,000
epochs with the ADAM optimizer [46] with learning rate 10−4 and
MAE loss function, Eq. (13). A random sampling of 80% of snap-
shots (nt) was used as the training set. Validation was performed on
10% and testing was performed on the remainder.

Layers Structure Filter
Kernel

size
Pool
size Activation Padding

1 Conv2D 32 (3,3) ReLU same
2 BatchNormalization
3 Conv2D 32 (3,3) ReLU same
4 BatchNormalization
5 MaxPooling2D (2,2) valid
6 Conv2D 64 (3,3) ReLU same
7 BatchNormalization
8 Conv2D 64 (3,3) ReLU same
9 BatchNormalization
10 MaxPooling2D (2,2) valid
11 Conv2D 64 (3,3) ReLU same
12 UpSampling2D (2,2)
13 Conv2D 32 (3,3) ReLU same
14 UpSampling2D (2,2)
15 Conv2D (output) 1 (3,3) linear same

CNN networks, arbitrary initial conditions were chosen for the
field U and it was evolved in time by solving Ut = FCNN(U)
numerically at each grid point.

A. Convolutional neural network architecture

The CNN network architecture is illustrated in Fig. 8. The
full details of the mathematical operations and functionality of
each layer are beyond the scope of this paper and can be found
in reviews on CNNs such as the one by Rawar and Wang
[59]. For particular applications where the desired outputs
include localization (a class label is assigned to each pixel),
a specific CNN architecture called “U-net” has been proposed
[60]. Since in most engineering and physics applications the
time evolution of the scalar field depends on the local spatial
derivatives, the U-net architecture is a reasonable candidate
for such a learning task. The U-net-inspired network has also
been successfully used in subgrid flame surface density esti-
mation for premixed turbulent combustion modeling [61].

The CNN structure proposed here, similar to the U-
net [60,61], resembles the encoding-decoding (autoencoding)

TABLE V. R2 values for CNN performance of predicting Ut for
test (unseen) data.

2D model Allen-Cahn Eq. (5) Cahn-Hilliard Eq. (6) PFC Eq. (8)

R2 0.98 0.975 0.985

networks. The scalar field discretized on nx × ny grid points
was fed as the input to the network. In the contracting path,
two convolutional layers (conv1, conv2 in Fig. 8) with 32
filters each followed by ReLU and batch normalization (bn1,
bn2) were applied. The kernel size was 3 × 3 for all the
convolutional layers. After the bn2 layer, the 2D max pooling
operation (mp1) with zero stride (for dimensionality reduction
purposes) was applied. The pool size for all the max pooling
layers was 2 × 2. The same substructure is repeated with
64 filters (conv3, bn3, conv4, bn4) up to the bottleneck
unit (output of mp2). The expansion path consists of two
convolutional layers (conv5,conv6) with ReLU units, each
followed by an upsampling layer (up1, up2) with the expan-
sion factor of (2,2). Finally, at the last convolutional layer
(conv7), a linear activation function was used with a filter
of size one resulting in an output of shape nx × ny. All the
parameters used for the network are summarized in Table IV.
The ADAM optimization was applied to find the parameters
of the network, where the cost function is the mean absolute
error between the network output and Ut from the training
set. In total, our CNN network consists of 121 057 trainable
parameters.

B. CNN performance for learning PDEs

The phase-field models presented in Sec. II were used
to evaluate the performance of the CNN network. For each
model, the total of nt two-dimensional U and Ut fields were
used and randomly split 80:10:10 into training, validation, and
test sets, respectively. The U and Ut fields from training sets
were provided as an input and output to the CNN. All models
were trained for 20 000 epochs, and the performance of the
network to recover the Ut (learning the RHS of a PDE) on
the test sets is summarized in Table V in terms of R2 values.
The values indicate that all the trained models performed
outstandingly in recovering the PDEs. The contours of Ut

and the prediction of the CNN [for the Cahn-Hilliard model,
Eq. (6)] are compared in Fig. 9 in the left two panels. The fig-
ure shows a qualitative agreement between the original and the
data-driven models. In addition, the true and CNN predicted

FIG. 9. Results using the CNN model trained on the Cahn-Hilliard [Eq. (6)] dataset. The left two panels show the color map of the Ut test
set and the corresponding prediction by the CNN. The Ût predictions for all test data as well as the traces of the loss functions are given in the
right two panels.

065303-10

MACHINE-LEARNING-BASED DATA-DRIVEN DISCOVERY … PHYSICAL REVIEW E 106, 065303 (2022)

(a)

(b)

(c)

FIG. 10. Time integration results of the PDEs learned by CNN for (a) Allen-Cahn [Eq. (5)], (b) Cahn-Hilliard [Eq. (6)], and (c) PFC
[Eq. (8)] at t = 2.2 and 6. Left panels: U field for original data. Middle panels: U field from simulations of the learned PDEs. Right panel: U
values along the centerline y = ny/2 for the original PDEs (solid lines) and from simulations of the learned PDEs (dashed lines).

065303-11

ELHAM KIYANI et al. PHYSICAL REVIEW E 106, 065303 (2022)

values of Ut for all the grid points for the test set are compared
in the third panel (correlation plot). The data lie mostly on
the diagonal line indicating good performance. The traces
of the loss/cost functions during the training phase are also
given in the rightmost panel of Fig. 9. Similar results/plots
were obtained for both the Allen-Cahn [Eq. (5)] and the PFC
[Eq. (8)] models (data not shown here).

C. Simulation of data-driven PDEs

In this section, the potential of the proposed method to
predict the field U in time and space based on a given initial
condition U0 is presented. For all three phase-field models
(Sec. II), we are interested in solving a set of PDEs of the
form

∂U (t, x, y)

∂t
= FCNN(U (t, x, y)),

U (0, x, y) = U0; initial condition, (15)

where the right-hand side is the output (prediction) of the
trained CNN networks. In the following, we used the U fields
at t = 2 (simulation time) as the initial condition (U0) for
all three models. The U field had nx × ny = 128 × 128 real
values for the Cahn-Hilliard [Eq. (6)] and the PFC [Eq. (8)]
models, and 256 × 256 for the Allen-Cahn model [Eq. (5)].
The different sizes were used to test if there is any size
dependence. At each time t , the Ut values for every grid
point were determined from our trained CNN models, and
nx × ny ODEs (ordinary differential equations) were solved
using the (stiff) integrator. We used the scipy Adams/BDF
method with automatic stiffness detection and switching for
time integration [62,63]. Those ODEs were solved up to t = 6
in our benchmark datasets.

Figure 10 shows the solutions of the original and the data-
driven PDEs. The color maps for U are given for qualitative
comparison as well as the U values along the centerline y =
ny/2 for two snapshots at times t = 2.2 and 6. The results in
Fig. 10 showed that the data-driven PDEs learned by CNN
approximate the original dynamics in both a quantitative and
qualitative manner.

Finally, we would like to emphasize the following points:
(i) The explicit forms of the data-driven PDEs are not known
and there is no obvious relation between the functional form
of the original and the learned PDEs. Therefore, unlike with
the phase-field models, there is no guarantee of the existence
and uniqueness for the learned PDEs. (ii) There are some iso-
lated points in which the Ut predicted values are different from
the original models. This discrepancy propagates in time and
space and can lead to finite-time blow-up in simulations. This
is a known issue in (almost all) machine-learning algorithms
for time series forecasting where there is no periodicity in
time [64,65]. In the case of no underlying periodicity, it may
occur that the system trajectories do not span the whole phase
space properly. Therefore, the observations do not properly
represent the possible outcomes of the system, and hence
models trained with those data may not be adequate. Such a
situation may limit the applicability of the approach to short
simulation times.

V. CONCLUSION

We have presented several data-driven methodologies for
discovering PDEs from phase-field dynamics. The well-
known Allen-Cahn, Cahn-Hilliard, and phase-field crystal
models were used as the test cases to predict the underlying
equations of motion.

First, we provided an MLP architecture to learn the PDEs
where the spatial derivatives are explicitly computed by finite
differences. Second, CNN-LSTMs were employed to learn
the governing PDEs from coarse-scale local values. Third,
we proposed a special CNN architecture for cases in which
there is no information about spatial dependence. In addition,
using numerical integration, we showed how the learned PDEs
can be used to predict coarse-scale variables as a function
of time and space, starting from given initial conditions. The
evolution of the learned and original PDEs showed excellent
agreement. We emphasize that all of the above algorithms
yield a black-box-type discovery of PDEs with no obvious
connection to the functional form of the physical models.

In general, MLP networks are extremely flexible with data,
and PDEs can be learned from various types of data using
these networks. More specifically, they can be used to learn
a mapping from a coarse field and its spatial derivatives as
the inputs. However, the performance of an MLP network
is greatly affected by the choice of architecture as shown in
Sec. III C. Along with approximating derivatives, we need to
know the derivatives’ orders, as that is required to train an
MLP network.

In CNN networks, however, spatial derivatives are not re-
quired, and thus a CNN can be thought of as a finite-difference
method capable of estimating derivatives in its first convolu-
tion layer. Moreover, one major advantage in using CNNs is
their capability to extract spatial features from inputs. Since
LSTMs pass only time information to the layers and keep the
missing spatial information from the previous steps, a com-
bination of CNNs and LSTMs can be applied more generally
on data with spatial relationships, and, in the current case, to
learn phase-field models. In spite of these advantages, CNN
networks are memory-intensive and require a large amount of
data and several iterations in order to be trained effectively,
and LSTMs are computationally expensive. Despite the above
limitations, we believe that the techniques introduced here
offer approaches that are both general and systematic, and
they provide a basis for future developments.

The study will be extended in two directions in the future:
(a) predicting two-dimensional noisy phase-field models, and
(b) predicting three-dimensional phase-field models. As a re-
sult of a limited amount of memory, it becomes increasingly
challenging to train networks efficiently in the second sce-
nario. As a consequence, we will use frameworks that can
handle large datasets.

ACKNOWLEDGMENTS

M.K. was partially supported by NIH Grant No.
GM133777. M.K. thanks the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) and the Canada
Research Chairs Program. Computing facilities were provided
by SHARCNET [66] and Compute Canada [67].

065303-12

MACHINE-LEARNING-BASED DATA-DRIVEN DISCOVERY … PHYSICAL REVIEW E 106, 065303 (2022)

[1] J. Han, A. Jentzen, and W. E, Solving high-dimensional partial
differential equations using deep learning, Proc. Natl. Acad.
Sci. (USA) 115, 8505 (2018).

[2] I. Lagaris, A. Likas, and D. Fotiadis, Artificial neural networks
for solving ordinary and partial differential equations, IEEE
Trans. Neural Netw. 9, 987 (1998).

[3] J. Sirignano and K. Spiliopoulos, DGM: A deep learning algo-
rithm for solving partial differential equations, J. Comput. Phys.
375, 1339 (2018).

[4] C. Huré, H. Pham, and X. Warin, Some machine learning
schemes for high-dimensional nonlinear PDEs, Math. Comput.
89, 1547 (2020).

[5] W. E, J. Han, and A. Jentzen, Algorithms for solving high
dimensional PDEs: From nonlinear Monte Carlo to machine
learning, Nonlinearity 35, 278 (2022).

[6] R. Ranade, C. Hill, and J. Pathak, DiscretizationNet: A
machine-learning based solver for Navier–Stokes equations us-
ing finite volume discretization, Comput. Methods Appl. Mech.
Eng. 378, 113722 (2021).

[7] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations, J. Comput. Phys. 378, 686
(2019).

[8] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S.
Wang, and L. Yang, Physics-informed machine learning, Nat.
Rev. Phys. 3, 422 (2021).

[9] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis, Learn-
ing nonlinear operators via DeepONet based on the universal
approximation theorem of operators, Nat. Mach. Intell. 3, 218
(2021).

[10] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis, DeepXDE: A
deep learning library for solving differential equations, SIAM
Rev. 63, 208 (2021).

[11] S. L. Brunton, J. L. Proctor, and J. N. Kutz, Discovering gov-
erning equations from data by sparse identification of nonlinear
dynamical systems, Proc. Natl. Acad. Sci. (USA) 113, 3932
(2016).

[12] H. Schaeffer, Learning partial differential equations via data
discovery and sparse optimization, Proc. R. Soc. Math. Phys.
Eng. Sci. 473, 20160446 (2017).

[13] S. Lee, M. Kooshkbaghi, K. Spiliotis, C. I. Siettos, and I. G.
Kevrekidis, Coarse-scale PDEs from fine-scale observations via
machine learning, Chaos Interdiscip. J. Nonlin. Sci. 30, 013141
(2020).

[14] P. R. Vlachas, W. Byeon, Z. Y. Wan, T. P. Sapsis, and P.
Koumoutsakos, Data-driven forecasting of high-dimensional
chaotic systems with long short-term memory networks, Proc.
R. Soc. Math. Phys. Eng. Sci. 474, 20170844 (2018).

[15] F. A. Gers, D. Eck, and J. Schmidhuber, Applying LSTM to
time series predictable through time-window approaches, in
Neural Nets WIRN Vietri-01 (Springer, Vienna, 2002), pp. 193–
200.

[16] J. del Águila Ferrandis, M. S. Triantafyllou, C.
Chryssostomidis, and G. E. Karniadakis, Learning functionals
via LSTM neural networks for predicting vessel dynamics in
extreme sea states, Proc. R. Soc. A 477, 20190897 (2021).

[17] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner, Learn-
ing data-driven discretizations for partial differential equations,
Proc. Natl. Acad. Sci. (USA) 116, 15344 (2019).

[18] C. Theodoropoulos and E. Luna-Ortiz, A reduced input/output
dynamic optimisation method for macroscopic and microscopic
systems, in Model Reduction and Coarse-graining Approaches
for Multiscale Phenomena (Springer, Berlin, 2006), pp. 535–
560.

[19] T. N. Thiem, M. Kooshkbaghi, T. Bertalan, C. R. Laing, and
I. G. Kevrekidis, Emergent spaces for coupled oscillators, Front.
Comput. Neurosci. 14, 36 (2020).

[20] Y. Kim, Convolutional neural networks for sentence classifi-
cation, in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language (Association for Computational
Linguistics, Doha, Qatar, 2014), pp. 1746–1751.

[21] D. Qin, J. Yu, G. Zou, R. Yong, Q. Zhao, and B. Zhang, A
novel combined prediction scheme based on CNN and LSTM
for urban PM 2.5 concentration, IEEE Access 7, 20050 (2019).

[22] S. M. Allen and J. W. Cahn, Ground state structures in ordered
binary alloys with second neighbor interactions, Acta Metall.
20, 423 (1972).

[23] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform
system. I. Interfacial free energy, J. Chem. Phys. 28, 258 (1958).

[24] K. R. Elder, M. Katakowski, M. Haataja, and M. Grant, Mod-
eling Elasticity in Crystal Growth, Phys. Rev. Lett. 88, 245701
(2002).

[25] K. R. Elder and M. Grant, Modeling elastic and plastic defor-
mations in nonequilibrium processing using phase field crystals,
Phys. Rev. E 70, 051605 (2004).

[26] S. A. Silber and M. Karttunen, SymPhas–General purpose soft-
ware for phase-field, phase-field crystal, and reaction-diffusion
simulations, Adv. Theory Simul. 5, 2100351 (2022).

[27] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. J.
Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Józefowicz,
L. Kaiser, M. Kudlur, J. Levenberg et al., TensorFlow: Large-
scale machine learning on heterogeneous distributed systems,
arXiv:1603.04467 (2016).

[28] N. Provatas and K. Elder, Phase-Field Methods in Materials
Science and Engineering (Wiley, Weiheim, Germany, 2010), pp.
57–222.

[29] A. M. Turing, The chemical basis of morphogenesis, Bull.
Math. Biol. 52, 153 (1990).

[30] T. Leppänen, M. Karttunen, K. Kaski, R. A. Barrio, and L.
Zhang, A new dimension to Turing patterns, Physica D 168-
169, 35 (2002).

[31] P. Gray and S. Scott, Sustained oscillations and other exotic
patterns of behavior in isothermal reactions, J. Phys. Chem. 89,
22 (1985).

[32] B. Grossmann, K. R. Elder, M. Grant, and J. M. Kosterlitz,
Directional Solidification in Two and Three Dimensions, Phys.
Rev. Lett. 71, 3323 (1993).

[33] W. J. Boettinger, J. A. Warren, C. Beckermann, and A. Karma,
Phase-field simulation of solidification, Annu. Rev. Mater. Sci.
32, 163 (2002).

[34] B. Nestler, H. Garcke, and B. Stinner, Multicomponent alloy
solidification: Phase-field modeling and simulations, Phys. Rev.
E 71, 041609 (2005).

[35] V. Heinonen, C. V. Achim, J. M. Kosterlitz, S.-C. Ying, J.
Lowengrub, and T. Ala-Nissila, Consistent Hydrodynamics for
Phase Field Crystals, Phys. Rev. Lett. 116, 024303 (2016).

[36] E. Alster, K. R. Elder, and P. W. Voorhees, Displacive phase-
field crystal model, Phys. Rev. Mater. 4, 013802 (2020).

065303-13

https://doi.org/10.1073/pnas.1718942115
https://doi.org/10.1109/72.712178
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.1090/mcom/3514
https://doi.org/10.1088/1361-6544/ac337f
https://doi.org/10.1016/j.cma.2021.113722
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1137/19M1274067
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1098/rspa.2016.0446
https://doi.org/10.1063/1.5126869
https://doi.org/10.1098/rspa.2017.0844
https://doi.org/10.1098/rspa.2019.0897
https://doi.org/10.1073/pnas.1814058116
https://doi.org/10.3389/fncom.2020.00036
https://doi.org/10.1109/ACCESS.2019.2897028
https://doi.org/10.1016/0001-6160(72)90037-5
https://doi.org/10.1063/1.1744102
https://doi.org/10.1103/PhysRevLett.88.245701
https://doi.org/10.1103/PhysRevE.70.051605
https://doi.org/10.1002/adts.202100351
http://arxiv.org/abs/arXiv:1603.04467
https://doi.org/10.1007/BF02459572
https://doi.org/10.1016/S0167-2789(02)00493-1
https://doi.org/10.1021/j100247a009
https://doi.org/10.1103/PhysRevLett.71.3323
https://doi.org/10.1146/annurev.matsci.32.101901.155803
https://doi.org/10.1103/PhysRevE.71.041609
https://doi.org/10.1103/PhysRevLett.116.024303
https://doi.org/10.1103/PhysRevMaterials.4.013802

ELHAM KIYANI et al. PHYSICAL REVIEW E 106, 065303 (2022)

[37] N. Provatas, J. Dantzig, B. Athreya, P. Chan, P. Stefanovic, N.
Goldenfeld, and K. Elder, Using the phase-field crystal method
in the multi-scale modeling of microstructure evolution, JOM
59, 83 (2007).

[38] N. Faghihi, S. Mkhonta, K. Elder, and M. Grant, Phase-field
crystal for an antiferromagnet with elastic interactions, Phys.
Rev. E 100, 022128 (2019).

[39] I. S. Aranson, V. A. Kalatsky, and V. M. Vinokur, Continuum
Field Description of Crack Propagation, Phys. Rev. Lett. 85,
118 (2000).

[40] R. Spatschek, E. Brener, and A. Karma, Phase field modeling
of crack propagation, Philos. Mag. 91, 75 (2011).

[41] P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical
phenomena, Rev. Mod. Phys. 49, 435 (1977).

[42] D.-H. Yeon, Z.-F. Huang, K. Elder, and K. Thornton, Density-
amplitude formulation of the phase-field crystal model for two-
phase coexistence in two and three dimensions, Philos. Mag.
90, 237 (2010).

[43] L. Q. Chen and J. Shen, Applications of semi-implicit Fourier-
spectral method to phase field equations, Comput. Phys.
Commun. 108, 147 (1998).

[44] ISO, ISO/IEC 14882:2017: Programming languages—C++,
5th ed. (International Organization for Standardization, Geneva,
Switzerland, 2017), p. 1605.

[45] T. Barlow, Feed-forward neural networks for secondary struc-
ture prediction, J. Mol. Graph. 13, 175 (1995).

[46] K. Diederik, B. Jimmy et al., Adam: A method for stochastic
optimization, arXiv:1412.6980 (2014).

[47] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee, Under-
standing deep neural networks with rectified linear units,
arXiv:1611.01491 (2016).

[48] W. L. Ziegler, Computational method to compute the deriva-
tive and antiderivative; with concern for terminating a con-
verging iterative process and considering accuracy, roundoff
error, approximation, and extrapolation, Math. Model. 8, 77
(1987).

[49] W. H. Press and S. A. Teukolsky, Numerical calculation of
derivatives, Comput. Phys. 5, 68 (1991).

[50] H. Arbabi and I. G. Kevrekidis, Particles to partial differential
equations parsimoniously, Chaos Interdiscip. J. Nonlin. Sci. 31,
033137 (2021).

[51] H. Arbabi, J. E. Bunder, G. Samaey, A. J. Roberts, and I. G.
Kevrekidis, Linking machine learning with multiscale numer-
ics: Data-driven discovery of homogenized equations, JOM 72,
4444 (2020).

[52] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, Going deeper
with convolutions, in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (IEEE, Boston, 2015),
pp. 1–9.

[53] J.-F. Cai, B. Dong, S. Osher, and Z. Shen, Image restoration:
Total variation, wavelet frames, and beyond, J. Am. Math. Soc.
25, 1033 (2012).

[54] B. Dong, Q. Jiang, and Z. Shen, Image restoration: Wavelet
frame shrinkage, nonlinear evolution pdes, and beyond,
Multiscale Model. Simul. 15, 606 (2017).

[55] S. Hochreiter and J. Schmidhuber, Long short-term memory,
Neural Comput. 9, 1735 (1997).

[56] A. Graves, Long short-term memory, in Supervised Sequence
Labelling with Recurrent Neural Networks (Springer, Berlin,
2012), pp. 37–45.

[57] V. Oommen, K. Shukla, S. Goswami, R. Dingreville, and
G. E. Karniadakis, Learning two-phase microstructure evo-
lution using neural operators and autoencoder architectures,
arXiv:2204.07230 (2022).

[58] L. Prechelt, Early stopping-but when?, in Neural Networks:
Tricks of the Trade (Springer, Berlin, 1998), pp. 55–69.

[59] W. Rawat and Z. Wang, Deep convolutional neural networks for
image classification: A comprehensive review, Neural Comput.
29, 2352 (2017).

[60] O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional
networks for biomedical image segmentation, in International
Conference on Medical Image Computing and Computer-
Assisted Intervention (Springer, Cham, 2015), pp. 234–241.

[61] C. J. Lapeyre, A. Misdariis, N. Cazard, D. Veynante, and T.
Poinsot, Training convolutional neural networks to estimate
turbulent sub-grid scale reaction rates, Combust. Flame 203,
255 (2019).

[62] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T.
Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser,
J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J.
Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern,
E. Larson, C. J. Carey, et al., SciPy 1.0: Fundamental algo-
rithms for scientific computing in python, Nat. Methods 17, 261
(2020).

[63] A. C. Hindmarsh, ODEPACK, a systematized collection of
ODE solvers, Sci. Comput. 1, 55 (1983).

[64] R. Rico-Martinez, J. Anderson, and I. Kevrekidis, Continuous-
time nonlinear signal processing: A neural network based
approach for gray box identification, in Proceedings of IEEE
Workshop on Neural Networks for Signal Processing (IEEE,
Ermioni, Greece, 1994), pp. 596–605.

[65] J. Fan and Q. Yao, Nonlinear Time Series: Nonparametric and
Parametric Methods (Springer, New York, 2003), pp. 1–553.

[66] www.sharcnet.ca.
[67] www.computecanada.ca.

065303-14

https://doi.org/10.1007/s11837-007-0095-3
https://doi.org/10.1103/PhysRevE.100.022128
https://doi.org/10.1103/PhysRevLett.85.118
https://doi.org/10.1080/14786431003773015
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1080/14786430903164572
https://doi.org/10.1016/S0010-4655(97)00115-X
https://doi.org/10.1016/0263-7855(95)00016-Y
http://arxiv.org/abs/arXiv:1412.6980
http://arxiv.org/abs/arXiv:1611.01491
https://doi.org/10.1016/0270-0255(87)90545-8
https://doi.org/10.1063/1.4822971
https://doi.org/10.1063/5.0037837
https://doi.org/10.1007/s11837-020-04399-8
https://doi.org/10.1090/S0894-0347-2012-00740-1
https://doi.org/10.1137/15M1037457
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/arXiv:2204.07230
https://doi.org/10.1162/neco_a_00990
https://doi.org/10.1016/j.combustflame.2019.02.019
https://doi.org/10.1038/s41592-019-0686-2
https://www.sharcnet.ca
https://www.computecanada.ca

