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h i g h l i g h t s

• We introduce a non-perturbative approach to derive hydrodynamics from kinetics.
• Schwinger–Dyson equation for the slow invariant hydrodynamic manifold is derived.
• Exact invariant manifold is found for a model kinetic equation.
• Exact diffusion mode is constructed.
• Comparison to the Chapman–Enskog expansion is presented.
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a b s t r a c t

We introduce non-perturbative analytical techniques for the derivation of the hydrody-
namicmanifolds from kinetic equations. The new approach is analogous to the Schwinger–
Dyson equation of quantum field theories, and its derivation is demonstrated with the
construction of the exact diffusion manifold for a model kinetic equation.

© 2014 Elsevier B.V. All rights reserved.

Derivation of hydrodynamic equations from the Boltzmann kinetic equation is the classical problem of statistical me-
chanics. The best known techniques, the Chapman–Enskog (CE) method [1], is a perturbation method based on a small
parameter (Knudsen number). While the formal derivation of the Navier–Stokes equation from the Boltzmann equation by
this method is a textbook example of the success of statistical physics, many problems related to the hydrodynamic limit of
the kinetic equations remained unsolved [2]. The CE perturbation expansion fails as the post-Navier–Stokes hydrodynamic
equations (Burnett’s equations) are unstable [3]. Moreover, even at the Navier–Stokes level, the rate of dissipation (by vis-
cosity, thermal conductivity or diffusion) is unbounded which contradicts the finiteness of relaxation times in the kinetic
picture. Finally, as was pointed out by many authors [4], the smallness parameter of the problem is not a fixed quantity
(unlike, for example, the fine structure constant in quantum electrodynamics) but can be always scaled out.

All this points at the inability of the CEmethod to tackle the above problem, and non-perturbative approaches are sought.
To that end, minimal kinetic theories such as Grad’s finite-moment systems have been studied in detail [5,6], including exact
summation of the entire CE series. Some results obtained along these lines are surprising. For example, Slemrod [4] noted
that exact summation of the CE expansion results in hydrodynamic equations of Korteweg’s type (that is, containing the
capillarity-type contribution) rather than a (modified) Navier–Stokes equation. However, results for kinetic equations, that
is, for infinite moment systems remained almost entirely unexplored due to lack of analytical non-perturbative techniques.

In this paper, we introduce a novel analytic approach to extracting non-perturbatively the hydrodynamic component
out of kinetic equations. We consider in detail a model kinetic equation, and derive exact invariance equation which is in
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Fig. 1. (Color online) Hydrodynamic limit of Eq. (1). Dash: First CE approximation, ω̂(2)
CE = −k2 (unbounded as k → ∞); Dot–dash: Burnett-type approx-

imation, ω̂(4)
CE = −k2 + k4 (unstable at k > 1); Line: Continuation by the sequence (30). Curves 1, 2, 3 and 4 correspond to the hydrodynamic branch ω̂

(2n)
H

for n = 1, 2, 20, 25, respectively. Interception by a partner kinetic mode ω̂
(2n)
P (dots) at k = k(2n)

c is indicated by open circle.

striking resemblance with the Schwinger–Dyson equation of non-perturbative field theories. Based on the exact solution
to the invariance equation, we build up a systematic non-perturbative extension procedure and show its relation to the
conventional Chapman–Enskogmethod. Present approach can beused beyond themodel kinetic equation considered below,
and we outline some further steps towards the non-perturbative hydrodynamic limit.

We consider the one-dimensional kinetic equation for the distribution function f (x, v, t):

∂t f = −v∂xf − τ−1 
f − f eq


, (1)

where the local equilibrium has the form

f eq = n(x, t) (2πkBT/m)−1/2 e−
mv2
2kBT , (2)

with n(x, t) the locally conserved density,

n =


∞

−∞

f (v, x, t)dv. (3)

The conventional CE analysis of (1) is to introduce a small parameter ϵ: τ → ετ , and to expand, f = f (0)
+ εf (1)

+ · · · ,
in order to produce a closure to the balance equation, ∂tn = −∂xj, where j =


∞

−∞
vf dv is the density flux. One easily

computes the first two terms of the CE closure, ∂tn = ωCEn: ω
(2)
CE = εD∂2

x (first approximation; this is the conventional
diffusion); ω

(4)
CE = εD∂2

x + ε2D2∂4
x (second approximation), where D = τkBT/m is the diffusion coefficient. The problem

with such a perturbation approach is readily seen even in the present case: after an appropriate rescaling in time and space,
the mode’s relaxation rate ω̂(k), where k is the wave vector, is (a) unbounded as k → ∞ in the first approximation, and
(b) unstable after k > 1 in the second approximation (see Fig. 1). Thus, even for the simplest kinetic equation (1), application
of the perturbative CE expansion inherits the essential problems as in the case of the Boltzmann equation. Our goal here is
to develop a non-perturbative method to study the hydrodynamic limit of (1).

In the sequel we put kBT/m = 1, τ = 1. Moments of the distribution functions can be written as,

Ml(x, t) =


∞

−∞

vlf (v, x, t)dv. (4)

Eq. (1) is equivalent to an infinite moment system,

∂tMl = −∂xMl+1 − Ml + Meq
l . (5)

Instead of the infinite set of moments (4), it proves convenient to consider the generating function Z(λ, x, t) (Fourier
transform in the velocity variable),

Z =


∞

−∞

e−iλv f (v, x, t)dv. (6)
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Let us denote Z± the real and imaginary parts of Z = Z+
+iZ−. Sincemoments (4) are real-valued, for even and oddmoments

we have, respectively,

M2n = (−1)n

∂2n
λ Z+


λ=0 ,

M2n+1 = (−1)n+1 
∂2n+1
λ Z−


λ=0 .

In terms of the generating function, Eq. (1) is represented as a coupled system for Z+ and Z−,

∂tZ+
= ∂x∂λZ−

− Z+
+ Zeq,

∂tZ−
= −∂x∂λZ+

− Z−,
(7)

where Zeq
= n(x, t)ϕeq, and ϕeq

= e−
λ2
2 . Finally, applying Fourier transform in space, Eqs. (7) become

∂t Ẑ+
= ik∂λẐ−

− Ẑ+
+ n̂ϕeq, (8)

∂t Ẑ−
= −ik∂λẐ+

− Ẑ−, (9)

where Ẑ±(λ, k, t) =


∞

−∞
e−ikxZ±(λ, x, t)dx depend on the wave vector k.

Eqs. (8) and (9) are the starting point for the non-perturbative analysis. In the hydrodynamic limit, all moments depend
on space and time only through their dependence on the locally conserved field (density). To this end, the most general and
yet unknown relation for the generating functions Ẑ± can be written as,

Ẑ+
= Θ̂+(λ, k2)n̂(k, t), (10)

Ẑ−
= ikΘ̂−(λ, k2)n̂(k, t), (11)

where Θ̂± are functions in question, satisfying the consistency conditions, Θ̂+(0, k2) = 1, Θ̂−(0, k2) = 0. Knowing Θ̂−,
the balance equation becomes, ∂t n̂ = −k2Ĝn̂, where

Ĝ = (∂λΘ̂
−)λ=0, (12)

is the extended diffusion coefficient (EDC).
Let us now formulate themost general condition for Θ̂±. The time-derivative of the generating function can be computed

in two different ways. On the one hand, it is computed by chain rule and using the balance equation:

∂macro
t Ẑ+

=
∂ Ẑ+

∂ n̂
∂t n̂ = (−k2ĜΘ̂+)n̂, (13)

∂macro
t Ẑ−

=
∂ Ẑ−

∂ n̂
∂t n̂ = ik(−k2ĜΘ̂−)n̂. (14)

This is the macroscopic time derivative, or the derivative of the yet unknown closed generating function due to the (also yet
unknown) closed balance equation. On the other hand, the microscopic time derivative is given by the right hand side of (8)
and (9):

∂micro
t Ẑ+

= (−k2∂λΘ̂
−

− Θ̂+
+ ϕeq)n̂, (15)

∂micro
t Ẑ−

= ik(−∂λΘ̂
+

− Θ̂−)n̂. (16)

The dynamic invariance condition [5] requires that the micro and the macroscopic derivatives of the generating function
should give the same result, independently of n̂:

∂micro
t Ẑ±

= ∂macro
t Ẑ±. (17)

Thus, the invariance condition for the generating function is a system of two first-order equations,

−k2ĜΘ̂+
+ k2∂λΘ̂

−
+ Θ̂+

− ϕeq
= 0, (18)

−k2ĜΘ̂−
+ ∂λΘ̂

+
+ Θ̂−

= 0, (19)

subject to initial conditions, Θ̂+(0, k2) = 1, Θ̂−(0, k2) = 0. It can be readily checked that the invariance equation generates
the CE solution when functions Θ̂± are expanded into Taylor series around k2 = 0. Our goal is, however, to solve the
invariance equation avoiding any expansion of this kind. We proceed with a few transformations: (i) Differentiate (18) with
respect to λ and eliminate ∂λΘ̂

+ to get a second-order equation for Θ̂−:

k2∂2
λΘ̂−

− (1 − k2Ĝ)2Θ̂−
− ∂λϕ

eq
= 0; (20)
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(ii) Differentiate Eq. (20) one more time; use transformed variable, ∂λΘ̂
−

= Σ̂e−λ2/2, and note that Ĝ = (Σ̂)λ=0. Thus, the
invariance equation for the generating function becomes,

(k2Ĝ − 1)2Σ̂ + (1 − λ2)(k2Σ̂ − 1) = k2(∂2
λΣ̂ − 2λ∂λΣ̂). (21)

Invariance equation (21) is key. We note that, although not form-identical, Eq. (21) can be regarded as an analog of the basic
equation of the non-perturbative approach in quantum field theories, the Schwinger–Dyson equation (SDE) [7,8]. Indeed,
SDE is a relationship between the one-particle Green’s function Ĝ and the mass operator Σ̂ . Standard derivation of SDE
proceeds along the lines similar to the above, considering the generating function of many-particle Green’s functions. In the
present context, the ‘‘mass operator’’ Σ̂ in (21) provides the coupling to all higher-order moments, and self-consistently
defines the EDC Ĝ. For the present analysis of (21), it is convenient to introduce frequency function Ω̂ = −k2Σ̂ , so that
ω̂ = −k2Ĝ = (Ω̂)λ=0:

(ω̂ + 1)2Ω̂ + k2(1 − λ2)(Ω̂ + 1) = k2(∂2
λΩ̂ − 2λ∂λΩ̂). (22)

Solution to the ODE (22) with the initial conditions, (Ω̂)λ=0 = ω̂, (∂λΩ̂)λ=0 = 0, is found in closed form,

Ω̂ = (ω̂ + 1)e
λ2
2 cosh(λβ) − 1 +

√
2π
4

βe
λ2+β2

2

×


2 cosh(λβ)erf


β

√
2


+ e−λβerf


λ − β
√
2


− eλβerf


λ + β
√
2


, (23)

where β =


(ω̂ + 1)2/k2, and erf is the error function. Function Ω̂(λ, ω̂, k2) (23) describes all invariant manifolds of the
kinetic equation: for every fixed k, it is a parametric set of functions (of λ) parameterized by frequency ω̂. The hydrodynamic
manifold is generated by a specific dependence ω̂H(k) which continues the corresponding solution at k = 0 to k > 0. We
note that the condition (Ω̂)λ=0 = ω̂ results in the identity, ω̂ = ω̂, rather than in an equation for ω̂H. Therefore, a special
procedure is needed for deriving the function ω̂H. Aswe shall see it below, the analyticity of Ω̂ implies that the hydrodynamic
manifold indeed extends to k > 0.

It is instructive to write the solution (23) in terms of a series,

Ω̂ = ω̂ +

∞
n=1

λ2nω̂2n(ω̂, k2)
(2n)!(k2n)

, (24)

where the coefficients ω̂2n have the following form:

ω̂2n = (ω̂ + 1)[ω̂(ω̂ + 1)2n−1
+ (2n − 1)!!(k2n) + p̂2n]. (25)

Here p̂2n(ω̂, k2) is a polynomial in ω̂ and k2 of the order k2(n−1), and (2n − 1)!! = 1 · 3 · 5 . . . (2n − 1). First few coefficients
have the following explicit form:

ω̂2 = (ω̂ + 1)[ω̂(ω̂ + 1) + k2],
ω̂4 = (ω̂ + 1)[ω̂(ω̂ + 1)3 + 3k4 + k2(ω̂ + 1)(1 + 6ω̂)].

We note in passing that coefficients ω̂2n (25) can be derived directly from the invariance equation (22), without solving it
explicitly. Accordingly, the continuation procedure described below can be used also in other cases where analytic solutions
to the corresponding invariance equations are difficult to obtain. Coefficients (25) imply the two limits:

ω̂2n → ω̂(ω̂ + 1)2n, k → 0, (26)

ω̂2n → (ω̂ + 1)(2n − 1)!!(k2n), k → ∞. (27)

Consequently, we have, at k → 0:

Ω̂0 ∼ ω̂ cosh[λ(ω̂ + 1)/k]. (28)

Requirement of finiteness of the above expression at k = 0 selects two values for ω: ω̂H = 0, and ω̂K = −1. The former is
the seed of the hydrodynamic branch, while the latter is the (infinitely degenerated) eigenvalue of the relaxation term of
(1). On the other hand, in the opposite limit k → ∞ (27), the function Ω̂ remains analytic,

Ω̂∞ = lim
k→∞

Ω̂ = (1 + ω̂)eλ2/2
− 1. (29)

Now, since at any k ≠ 0 function (23) is analytic function of λ, the series (23) is convergent; hence, ω̂2n(ω̂, k2)/((2n)!k2n) →

0 as n → ∞. This observation implies the following practical recipe for the continuation for finite k: Let us consider a
sequence of algebraic equations,

ω̂2n(ω̂, k2) = 0, n = 1, 2, . . . . (30)
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Table 1
Expansion of the hydrodynamic mode ω̂H =


∞

n=1 a2nk
2n by the sequence (30). Coefficients in boxes match the CE expansion ω̂CE .

a2 a4 a6 a8 a10 a12 a14

ω̂
(2)
H −1 −2 −5 −14 −42 −132

ω̂
(4)
H 3 16 −122 312

ω̂
(6)
H 2110 −17352

ω̂
(8)
H

ω̂CE −1 1 −4 27 −248 2830 −38232

Fig. 2. Deviation of the CE approximations ω̂
(2n)
CE for n = 1, . . . , 7 from the exact solution, en =

(ω̂(50)
H − ω̂

(2n)
CE )/ω̂

(50)
H

.
At k = 0, for every n, Eq. (30) seeds one (hydrodynamic) branch at ω̂H = 0 and 2n degenerated kinetic branches at ω̂K = −1.
The solution ω̂

(2n)
H (k) with the asymptotics ω̂

(2n)
H (0) = 0 is the extension of the hydrodynamic branch at the nth order of

the said procedure. In other words, instead of the CE expansion in terms of k2 we consider a sequence of finite-dimensional
algebraic problems of increasing order (30) based on the convergence of the series (24). We term this a pullout procedure
for the reason clarified in Fig. 1: At each step n, the hydrodynamic branch ω̂

(2n)
H is pulled out till the critical value k(2n)

c . At
k(2n)
c , the hydrodynamic branch is intercepted by one of the kinetic branches (partner kinetic mode ω̂

(2n)
P with the asymp-

totics, ω̂(2n)
P → −1 as k → 0). After the interception, the pair of real-valued solutions {ω̂

(2n)
H , ω̂

(2n)
P } continue as the pair

of complex-conjugated roots of (30). This effect of interception is well known from previously studied exact summations
of the CE expansion of the diffusion-type modes for finite-moment systems [5]. The pullout procedure thus furnishes a
non-perturbative extension of the hydrodynamics with monotonically increasing accuracy for finite k. At any step of the
procedure (30) the result is bounded, and the interception point k(2n)

c increases monotonically. In Table 1, the matching of
the polynomial expansion to order k14 for the sequence of pullouts ω̂

(2n)
H is verified against the CE expansion. However, the

present procedure demonstrates a much better and controlled convergence. It is evident from Fig. 1 that the hydrodynamic
branch is pulled out smoothly so that the result of the highest order of approximation shown in Fig. 1 can be regarded exact
up to k ≈ 0.8. Using the data of Fig. 1, in Fig. 2 we present the deviation of the CE expansion at various orders of approx-
imation in terms of k2. While the CE expansion indeed systematically improves the accuracy at very small k, this comes
at a price of increased deviation at larger k. By the contrast, the pullout procedure is, in fact, a non-perturbative (that is,
a non-polynomial in k) method which approximates the infinite-dimensional problem (the infinite moment system) with
a sequence of finite-dimensional problems (30) of increasing order; at each step the available piece of the hydrodynamic
manifold is bounded and well controlled.

We conclude this paper with a discussion. Above, we have considered the kinetic equation (1) the conventional hydro-
dynamic limit of which is considered to be the diffusion equation, while its standard perturbative analysis inherits the main
problems.Wehavederived invariance equation, as the analog of the Schwinger–Dyson equation in the present context. Exact
solution to the invariance equation found above is, to the best of our knowledge, the first of its kind for infinite-dimensional
kinetic systems. Based on the analyticity of the exact solution we have introduced a new procedure of continuation of the
hydrodynamic mode and have shown its consistency with the standard Chapman–Enskog expansion. The change of the
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perspective on the derivation of hydrodynamics, by switching from a perturbative gradient expansion (expansion in terms
of wave vector k) to a sequence of finite-order, non-perturbative in gradients problems keeps the extension of the hydro-
dynamics under control. Another connection to the SDE was mentioned in Refs. [9,10] in the context of lattice Boltzmann
simulation of turbulent flows.

Findings of this work lay out the way to study the reduced description for other systems. In particular, related linearized
kinetic models such as the Bhatnagar–Gross–Krook kinetic equations can be considered straightforwardly along the above
lines, also in three dimensions since the general tensorial structure of the generating function is known in that case [5].
For the linearized Boltzmann equation, the resulting invariance equation contains then the linearized Boltzmann operator,
and the pullout procedure will amount to solving linear integral equations of familiar type [1]. Finally, for the non-linear
case, approximate hydrodynamic manifolds arising in the pullout procedure can be obtained along the lines of non-linear
finite-moment systems [5].
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