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Abstract

The need to design of efficient combustion systems with minimal emissions

of pollutants has led to the development of large detailed reaction mech-

anisms for combustion involving hundreds of chemical species reacting in

a complex network of thousands of elementary reactions. Incorporating

such a detailed reaction mechanism into multidimensional simulations is

practically impossible. Different methodologies have been proposed for the

reduction of detailed mechanisms. In the present work, model reduction

approaches based on timescale separation and thermodynamic analysis are

revisited, introduced, validated and used.

First, an algorithm based on the Relaxation Redistribution Method

(RRM) is revisited and modified for constructing the Slow Invariant Mani-

fold (SIM) of a chosen dimension to cover a large fraction of the admissible

composition space that includes the equilibrium and initial states. The

manifold boundaries are determined with the help of the Rate Controlled

Constrained Equilibrium method, which also provides the initial guess for

the SIM. The latter is iteratively refined until convergence and the con-

verged manifold is tabulated. The global realization of the RRM algorithm

is applied to hydrogen-air mixtures.

Second, Spectral Quasi-Equilibrium Manifold (SQEM), which is based

on the entropy maximization under constraints built by the slowest eigen-

vectors at equilibrium, is proposed to construct the slow manifold for com-
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Abstract

bustion mechanisms including the homogeneous mixtures of hydrogen/air,

syngas/air and methane/air, in the adiabatic constant pressure reactor.

Third, a new approach based on the relative contribution of each ele-

mentary reaction to the total entropy production is proposed for eliminat-

ing species from detailed reaction mechanisms in order to generate skeletal

schemes. The approach is applied on n-heptane/air detailed mechanism to

construct two skeletal schemes for different threshold values. The accuracy

of the skeletal mechanisms is evaluated in spatially homogeneous systems

with respect to the ignition delay time, a single-zone engine model, and the

speed and structure of spatially-varying premixed laminar flames for a wide

range of thermodynamic conditions.

Fourth, the dynamics of n-heptane/air mixtures in perfectly-stirred-

reactors (PSR) is investigated systematically using bifurcation and stability

analysis and time integration. The significantly reduced size of the skeletal

mechanism for n-heptane/air mixtures found in this thesis, enables the

extension of the bifurcation analysis to multiple parameters. In addition

to residence time, the effect of equivalence ratio, volumetric heat loss and

the simultaneous variation of residence time and inlet temperature on the

reactor state are investigated. Computational Singular Perturbation (CSP)

and entropy production analysis were used to probe the complex kinetics

at interesting points of the bifurcation diagrams.

The model reduction approaches can also be applied on fine-grained

multiscale systems, arising in physical kinetic problems. In this thesis the

systematic non-perturbative analytical approach is presented for the con-

struction of the diffusion manifold from the one-dimensional Boltzmann

equation.
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Zusammenfassung

Die Forderung nach effizienten Verbrennungssystemen mit minimalen Emis-

sionen hat zur Erstellung von detaillierten Reaktionsmechanismen mit hun-

derten von chemischen Stoffen zusammen mit tausenden elementarer Reak-

tionen geführt. Allerdings ist der Einbau von solch komplexen Mechanismen

in multidimensionale Simulationen praktisch unmöglich. Daher wurden in

der Vergangenheit verschiedene Methoden vorgestellt um die Reaktions-

mechanismen zu reduzieren. In dieser Arbeit wird werden Methoden zur

Reduktion von Mechanismen basierend auf der Separierung der Zeitskalen

und einer thermodynamischen Analyse überdacht, eingeführt, validiert und

verwendet.

Als erstes wurde ein Algorithmus basierend auf der “Relaxation Redis-

tribution Method” (RRM) überdacht und modifiziert mit dem Ziel einen

“Slow Invariant Manifold” (SIM) für eine gewünschte Dimension zu konstru-

ieren, der ein breites Spektrum des erlaubten Mischungsraumes inklusive des

Gleichgewichts und des Anfangszustands beinhaltet. Die Randbedingungen

des “Manifolds” werden mit der “Rate Controlled Constrained Equilibrium”

Methode bestimmt, die auch ein geschätztes Anfangsfeld für die SIM bere-

itstellt. Die letztere wird iterativ verfeinert bis die Resultate konvergieren.

Anschliessend wir der “Manifold” tabuliert. Der modifizierte RRM Algorith-

mus wird in der Arbeit für Wasserstoff-Luft Mischungen verwendet.

Zweitens: Zur Erzeugung des “slow manifolds” für die Verbrennungsm-
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echanismen von Wasserstoff/Luft, Syngas/Luft und Methan/Luft Gemis-

chen im adiabaten Gleichdruckreaktor wird die“Spectral Quasi-Equilibrium

Manifold” (SQEM) Methode vorgeschlagen, welche auf der Maximierung

der Entropie unter Einschränkungen des langsamsten Eigenvektors bei Gle-

ichgewichtbasiert.

Drittens: Ein neuer Ansatz zur Eliminierung von Spezies aus detail-

lierten Reaktionsmechanismen zur Erzeugung skelettaler Schemen, basierend

auf dem relativen Beitrag jeder elementaren Reaktion zur gesamten En-

tropieproduktion, wird vorgeschlagen. Dieser wird angewandt auf detail-

lierte n-Heptan/Luft-Mechanismen zur Erzeugung zweier skelettaler Mech-

anismen für unterschiedliche Schwellwerte. Die Genauigkeit der Skelett-

Mechanismen wird erstens in einem räumlich homogenen System hinsichtlich

des Zündverzuges, zweitens in einem ein-Zonen Motormodel und drittens

über die Geschwindigkeit und Struktur von vorgemischten Flammen vali-

diert.

Viertens: Die Dynamik von n-Heptan/Luft Gemischen in “perfectly

stirred reactors” (PSR) wird mit Hilfe von Bifurkation, Stabilitätsanalyse

und zeitlicher Integration systematisch untersucht. Die gefundene drastis-

che Reduktion der Anzahl sekelletaler Mechanismen für n-Heptan/Luft Ge-

mische ermöglicht die Ausweitung der Bifurkation auf mehrere Parameter.

Zusätzlich zur Verweildauer wurden der Einfluss des Äquivalenzverhältnises,

der volumetrischen Wärmeverluste sowie die simultane Variation von Ver-

weildauer und Einlasstemperatur auf den Reaktorzustand untersucht. Die

“Computational Singular Perturbation” (CSP) Methode und Analyse der

Entropieerzeugung wurden verwendet um komplexe kinetische Vorgänge an

Punkten von Interesse im Bifurkations-Diagramm zu untersuchen.

Die Ansätze zur Modellreduzierung können auch auf hochauflösende

Multiskalen-Systeme angewandt werden, die bei physikalisch-kinetischen

Problemen auftreten. In dieser Arbeit wird ein systematischer Ansatz zur

nicht-perturbativen, analytischen Erzeugung vom “diffusion manifold” auf

Basis der eindimensionalen Boltzmann-Gleichung vorgestellt.
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Chapter 1

Introduction

1.1 Motivation

Combustion of different types of fossil fuels is crucial for covering the global

energy demand for at least the next few decades. The share of a variety of

hydrocarbons from simple to complex structure, in total energy use in U.S.

is predicted to be about 80% in 2040 [1]. The need for efficient combustion

systems with minimal emissions of pollutants has lead to the developments

in the directions of new fuels and new combustion regimes. Particularly

in transportation systems (internal combustion engines and gas turbines),

efficient and “near-zero” pollutant combustion process can only be designed

if the system can be modeled accurately. The aim of modeling is describing

a physical process of interest, with a system of equations (mostly differential

equations). In combustion, the system of equations should account for the

fluid flow, the interaction between chemical substances and the reciprocal

influence of combustion and flow.

The fluid is modeled by the Navier-Stokes equations, differential equa-
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tions for the conservation of momentum, coupled with equations for the

conservation of mass, energy and species. With the help of some constitu-

tive relations, the above system of equations is closed [2]. Chemistry can

be described by detailed kinetic reaction mechanisms which has the vital

role in understanding the phenomena in applied and fundamental interests

involved in reactive flow problems.

The detailed reaction mechanisms of practical fuels provide accurate de-

scription of combustion kinetics over wide ranges of temperature, pressure

and compositions. For practical fuels (mixture of higher hydrocarbons),

the detailed description typically involves hundreds of species participating

in thousands of elementary chemical reactions. Starting from H2 and CO

chemistry, detailed reaction mechanisms for hydrocarbons are constructed

by adding elementary reactions involving the heavier species [3]. For large

hydrocarbon fuels, automated computer programs can be used to generate

the detailed mechanisms based on reaction classes [4]. The size of the de-

tailed reaction mechanisms for hydrocarbons increases dramatically with

the number of carbon atoms (Table 1.1). In addition to the large number

CH4 [5] C3H8 [6] C7H16 [4] C10H22 [7] C12H26 [7] C14H30 [7] C16H34 [7] C20H42-2 [8]
Species 53 136 561 940 1282 1668 2116 7200

Reactions 325 966 2539 3878 5030 6449 8130 31400

Table 1.1: Sizes of detailed reaction mechanisms for hydrocarbons

of variables, chemical kinetics introduces disparate time scales which can

range from nanoseconds to fractions of a second, whereas the long-term be-

havior of the system is dictated by timescales much slower than dissipative

ones [9]. The classes of differential equations depending on greatly differ-
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ing time constants are called stiff [10] and special numerical treatment is

required. For more rigorous definitions and numerical schemes see [11]. In

ideal spatially homogeneous reactors, such a complexity poses no difficulty

and detailed chemistry can effectively use state-of-the-art stiff integrators.

However, most systems of practical interest are spatially inhomogeneous.

At each computational node and for every time step, the conservation laws

of mass, momentum, energy and all species should be solved, resulting in

a very large system of Partial Differential Equations (PDEs). Incorporat-

ing the detailed reaction mechanisms into multidimensional simulations is

practically impossible due to the enormous computational cost.

The efficient simulations of reacting systems in two and three spatial

dimensions necessitates the development and utilization of accurate simpli-

fied descriptions of the chemistry with a small number of representative

variables. The overall integration time will decrease with the extent of re-

duction due to (a) fewer number of variables, (b) decreased stiffness, and

(c) decreased cost of Jacobian evaluation in stiff integrators [12].

Stiff and dissipative behavior also can also be observed in infinite-

dimensional dynamical systems arising in physical kinetics. The Boltzmann

kinetic equation is the governing equation covering an extended range of

scales and consequently model reduction techniques can be applied to ob-

tain reduced models for the range of scales of interest. The transition from

kinetic theory for perfect gases to hydrodynamic can be considered as the

construction of reduced models from the detailed one.

The aim of model reduction techniques is to construct the low dimen-
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sional models of large-scale dynamical systems, which can capture accu-

rately the complex behavior of the system.

In this work, systematic approaches for constructing low dimensional

chemical and physical kinetics models will be introduced and applied in

different problems.

1.2 Reduction of Reaction Mechanisms

Broadly speaking, simplifying the description of chemical kinetics is achiev-

able via different approaches (e.g. [13]):

1. Reducing the number of variables or simplifying their governing equa-

tions by eliminating inessential species, assuming zero rate of change

or by lumping some of the species into integrated components;

2. Reducing the number of reactions by eliminating unimportant reac-

tions, or by assuming that some of the reactions have equilibrated;

3. Decomposing the kinetics into fast and slow subsystems (in the pres-

ence of timescale separation) and finding an accurate description of

the evolution for the slow subsystem.

The first and second approaches typically achieving reduction in the

number of species lead to the so-called skeletal model reduction. Methods

falling within the scope of the third category provide systematic tools based

on timescale analysis.
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1.2. Reduction of Reaction Mechanisms

Comprehensive mechanisms usually contain a number of species and

reactions which, have only minor effects on the macroscopic behavior of

the system (e.g. temporal evolution of the temperature and heat release).

Skeletal mechanisms have fewer number of species/reactions which makes

them less complex compared to the comprehensive mechanisms [14]. On the

other hand, usually unimportant reactions and species correspond to fast

timescales, therefore, eliminating them makes the system less stiff. Many

methods have tried to answer how to select redundant species and reactions

and some of them will be referred to, latter in this chapter.

A common feature of systems enjoying timescale separation is that

the relaxation has a certain geometrical structure in phase space: individ-

ual trajectories tend to relax towards chemical equilibrium or other low-

dimensional attractors through a nested hierarchy of smooth hypersurfaces

(inertial manifolds) (e.g. [13, 15, 16]). Sample trajectories for the oxidation

of H2 in air in an isenthalpic isobaric reactor are shown in Fig. 1.1. The

detailed reaction mechanism of hydrogen involves 9 species in 21 elementary

reactions [17]. Conservation of atoms for O, H, N elements imposes three

constraints on the number of moles of species. Therefore, the dynamical sys-

tem is effectively six-dimensional. It can be seen that, all trajectories are

attracted to the neighborhood of the thick line (slow manifold) embedded

in the phase space whose approximate loci is marked by the oval. For the

selected trajectory (solid line), the discrete times are also marked, showing

that more than 60% of the temporal evolution is restricted to dynamics on

a one-dimensional manifold.
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Figure 1.1: Sample trajectories (dashed lines) of the chemical reactions
for H2/air autoignition (constant pressure (p = 1 atm) and enthalpy H0 =
1024.1 kJ/kg) projected on YH2O-YOH plane. The circles denote the discrete
time for selected trajectory (solid line) and the oval shows the approximate
location of one-dimensional slow manifold of the system.

Neglecting the initial transient, the dimension of attracting manifolds

are much lower than the dimension of the full state. As shown in hydro-

gen oxidation example, the dynamics in the neighborhood of the equilib-

rium evolves through a one-dimensional manifold to ends up on the zero-

dimensional manifold of the equilibrium. With sufficiently separated re-

laxation times, the initial transient is typically short and the system state

spends most of its temporal evolution on low-dimensional manifolds, known

as slow manifolds.
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The slow manifolds can help to formulate reduced models for the de-

tailed evolution and modern automated approaches for model reduction are

based on their computation. At present there are a number of approaches

for chemical kinetics reduction. A partial list is given below. A detailed

discussion and presentation of the approaches can be found in the review

papers [9, 13,18] and the recent book of Turànyi and Tomlin [15].

1.2.1 Systematic approaches for species and reactions re-

moval

The species and reactions can be ranked according to their importance in the

observed behavior. The challenge then becomes how to find the eventually

redundant species and reactions systematically. Typically, removal of redun-

dant reactions will indirectly shorten the list of species by eliminating the

species which only appear in the redundant reactions. The identification of

the redundant elementary reactions is in general simpler than unimportant

species and sometimes chemical intuition maybe be enough to distinguish

the unimportant reactions based on their class.

In one of the early attempts to generate skeletal mechanisms, the re-

duced model was considered as accurate when the temporal evolution of

the thermal and chain reactions could be accurately captured [19]. It has

been observed that in detailed mechanisms the change in the rate of some

elementary reactions results in a significant change in the relaxation of the

system state. These reactions, known as rate-limiting steps can be iden-

tified systematically by absolute and relative sensitivities. The results of
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this analysis is usually expressed in terms of the sensitivity matrix includ-

ing normalized sensitivity coefficients [20, 21]. However, one cannot safely

eliminate the elementary reactions corresponding to small sensitivity coef-

ficients. Principal Component Analysis (PCA) [22] has been proposed as

an informative tool to scrutinize the sensitivity analysis results. Applica-

tions of PCA in skeletal mechanism generation for H2/air and CH4/air in

premixed laminar flame and perfectly-stirred and plug-flow reactors can be

found in [23,24].

Another group of methods aimed at species and reactions removal is

based on graphs. After selecting the set of important species, the network

of species can be constructed around them. The skeletal mechanism can be

generated by eliminating the species whose distance from the major species

is greater than a user-defined threshold or by removing the elementary re-

actions participating in minor pathways. There are several proposals in the

literature for defining the connection weight in the graph. In the Connectiv-

ity Method (CM), the graph edges are constructed based on the percentage

change of the production rate of important species due to 1% change in the

concentration of minor species [15,20]. The method is based on the investi-

gation of the elements of the normalized Jacobian of the chemical kinetics

system. In the Reaction Path Analysis (RPA), the path connecting the re-

actants to major products are constructed based on the contribution of each

reaction to the net rate of production/depletion of each species. The minor

path and consequently the redundant elementary reactions (and indirectly

unimportant species) can then be removed from the detailed mechanism
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(see for example the oxidation path of C1 and C2 hydrocarbons [25] and

skeletal mechanism for methane at lean condition [24]). The atomic flux

analysis considers the elemental flux of atom A from species i to species

j through reaction k. Normalized fluxes define the connectivity topology

and the relatedness strengths between nodes of the graphs [24,26]. Similar

to CM, the Directed Relation Graph (DRG) method was proposed to quan-

tify the directed influence of one species on production rate of another [27]

and the algorithm is computationally more effective than computing and

analyzing the Jacobian for large mechanisms. Path Flux Analysis (PFA) is

another approach similar to RPA and DRG in which the production and

consumption fluxes of the species are used to define the connection weights

in the graph [28].

In Trial and Error approaches [15, 29], important/redundant species

can be determined by generating series of skeletal mechanisms where in

each one a species is removed and the results are compared with the de-

tailed mechanism. The necessity analysis method is introduced to combine

the sensitivity and reaction path analysis with trial and error method to

generate as small as possible skeletal mechanism with a wide range of ap-

plicability [30]. A necessity value is assigned to each species which is the

maximum of the total amount of formation and consumption includes both

reaction flow values and sensitivity coefficients [30].

Another category of approaches is based on optimization which aims

at minimizing a target function using the smallest number of species from

the detailed description. The target function is a user-defined functional
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measuring the error in the feature (e.g. ignition delay) of the original system

which is of interest [12, 31] or the minimization of the number of reactions,

while the error with respect to the detailed model is constrained [32].

The important species and reactions can also be identified based on

their supporting or opposing contribution in the development of the mode

of the system corresponding to the time-scale of interest. In the scope of

time-scale based methods, the Computational Singular Perturbation (CSP)

proposes a systematic approach for understanding the chemical processes

and their relation to the observed behavior. In the scope of skeletal mech-

anism construction, CSP introduced several diagnosis tools like the CSP

radical pointer, pointing to the species which are mostly affected by the

corresponding time scale, and the amplitude participation index, measuring

the contribution of elementary reaction k to the i-th CSP mode (see chap-

ter 5). In the last two decades several modifications have been proposed

including a modified algorithm for constructing the skeletal mechanism for

hydrocarbons [33] and additional diagnostic tools like timescale participa-

tion index [34].

1.2.2 Slow-Fast motion decomposition

Slow-fast systems are dynamical systems, enjoying disparate timescales. An

arbitrary slow-fast initial value problem can be written in the form

ε
dx

dτs
= f(x,y)

dy

dτs
= g(x,y)
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where f : Rn × Rm → Rn, g : Rn × Rm → Rm. The components of

x ∈ Rn are fast while y ∈ Rm are slow variables and the timescale separation

parameter is 0 < ε � 1. The slow timescale is τs and the fast time scale

can be set by τf = τs/ε, and the associated form of the original system with

respect to the fast time τf can be written as:

dx

dτf
= f(x,y)

dy

dτf
= εg(x,y)

In the adiabatic limit ε→ 0 the system of differential equations becomes a

system of Differential Algebraic Equations (DAEs)

0 = f(x,y)

dy

dτs
= g(x,y)

The set M := {(x,y)|x = x∗(y) ∧ f(x∗(y),y) = 0} is the slow manifold

which the system trajectories reach after a short initial transient [35, 36].

The slow manifolds which are invariant under the action of the dynamical

system are known as Slow Invariant Manifolds (SIM) (see chapter 2).

The traditional approaches for simplifying reaction mechanisms are

based on the Quasi Steady State Approximation (QSSA) and the Partial

Equilibrium Assumption (PEA) [9, 37]. In QSSA, the production and de-

struction rates of the Quasi Steady State (QSS) species are much larger than

the net rate of formation [9]. The rate of formation for the QSS species can

be set to be zero, turning the system of differential equations to a system
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of DAEs. The solution of the algebraic equations defines the QSS manifold,

which is parametrized by the non-QSS species. The concentrations of the

QSS species can be computed from the non-QSS species concentrations.

On the other hand, under certain conditions, a reaction or a group

of reactions can have very large forward and backward rates so that they

rapidly relax towards the quasi-equilibrium state. In the PEA approach,

the net rate of these reactions can be approximately set to zero, and similar

to QSSA a system of DAEs can be constructed for the net rate of the

concentration of the species participating in the equilibrated reactions.

In order to employ QSSA and PEA for reduction, chemical insight is

needed to identify the QSS species or the equilibrated reactions. In addition,

the system of DEAs deduced from these methods was constructed analyti-

cally and the results were case dependent. Different approaches have been

proposed to identify the slow and fast variables and construct the slow man-

ifold in a systematic way. For the purposes of this work, low-dimensional

manifold construction techniques for chemical kinetics can be broadly clas-

sified into two categories [38], timescale-based and geometrical approaches.

The first category is based on timescale analysis to identify the slow

and fast modes of the system. Generally, singular perturbation provides

a rigorous framework for analyzing systems with slow-fast characteristics.

In this context, CSP proposed an iterative refinement procedure aiming

at approximating the basis vectors spanning the slow and fast subspaces

[39]. Starting with an arbitrary initial basis, the refinement procedure can

be written in terms of evolution equations of slow and fast basis vectors
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which approximate the slow manifold and the accuracy of reduced dynamics

improves by one order after each iteration [40]. After a number of iterations

the vectors spanning the slow and fast subspaces are stored columnwise

in matrices As and Af and the corresponding Bs and Bf include the

orthogonal row vectors. The approximation of the slow manifold is the

solution of Bf [f , g]T = 0 ([:, :] denotes vertical concatenation) while the

reduced dynamics is governed by d[x,y]T/dτs = As(B
s[f , g]T ) [41].

Based on the spectral decomposition of the Jacobian, which recovers

the CSP basis to leading order, the Intrinsic Low Dimensional Manifold

(ILDM) method [42] constructs a first-order approximation of the slow man-

ifold [43]. ILDM assumes that the slow and fast subspaces can be locally

spanned by the left and right eigenvectors at every point in phase space.

The second category of low-dimensional manifold construction methods

includes geometrical approaches. For example, the thermodynamic proper-

ties which are known functions of the system state can be used to deter-

mine low-dimensional thermodynamic manifolds, which are ‘good’ in the

sense that they are not folded, multi-valued, discontinuous, non-realizable

or non-smooth [18]. The Rate-Controlled Constrained Equilibrium (RCCE)

method assumes that the variables evolve from the initial to the equilibrium

(steady) state through a sequence of quasi-equilibrium states, which can be

computed by minimizing a thermodynamic Lyapunov function under appro-

priate predefined constraints [44,45]. The temporal evolution of the system

can be expressed as a function of the rate of change of the constraints.

Similarly, an invariant constrained equilibrium edge (ICE) manifold is con-
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structed from trajectories emanating from the constrained equilibrium edge,

which can be defined by an RCCE-like approach; the local species recon-

struction can be obtained with the help of preimage curves [46]. Trajecto-

ries, which are closest to equilibrium, are alternative candidates for the slow

manifold. The slow manifold is the trajectory which is discriminated from

the others via minimal entropy production analysis [47]. It is worth noting

that manifolds obtained using thermodynamic functions are approximations

of the SIM, which often are neither slow nor invariant [38].

Another constructive geometrical method proposed by Roussel and

Fraser [16] is based on the iterative solution of the Partial Differential

Equations (PDEs) defining the slow manifold. The nd-dimensional iner-

tial manifold is assumed to have the form M =M(ξ1, ..., ξnd) where ξi are

representing the slow manifold parametrization variables and nd is the di-

mension of manifold. By substituting this form in to the system of ODEs,

one can find the functional equation in the form of PDEs which govern

the convergent sequence of surface functions Mi, where i is the number of

iterations.

Gear et al. [48] presented a procedure to find the slow manifold by

iterative integration. Starting from an arbitrary initial point, time integra-

tion brings the system toward the state where fast components are relaxed.

This state is then extrapolated back to the same value of slow variables by

polynomial extrapolation. The extrapolated state provides the approxima-

tion of initial point where the fast components of dynamics are quietened.

After several iterations, the initial point is projected on the slow manifold
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and by time integration from this new initial point one can construct the

slow manifold or solve the full system which is now less stiff. The reduced

dynamics is achieved without having it in the closed form, which is the basic

of equation-free algorithms [49].

1.3 Hydrodynamic limits of the Boltzmann Equa-

tion

At the International Congress of Mathematicians (ICM) held in Paris in

1900, Hilbert posed 22 problems [50]. Hilbert’s 6th problem (“Mathematical

treatment of the axioms of physics”) can be recast as the question whether

macroscopic concepts such as the viscosity or the nonlinearity can be un-

derstood microscopically [51] or how to derive continuum compressible gas

dynamics at low Knudsen number from the Boltzmann equation for rarefied

gases [52]. The problem is revisited in the hydrodynamic limit of the Boltz-

mann equation in which the derivation of hydrodynamics from the Boltz-

mann equation and related dissipative systems is formulated as the problem

of a slow invariant manifold in the space of distributions [53]. Several ap-

proaches including the well-known Chapman-Enskog expansion [54], Grad’s

moment method [55] and direct solution of the invariance equation [53] have

been proposed for the construction of the hydrodynamic manifolds which

cover a wide range of Knudsen numbers. The problem is well studied up

to the conditions where the solutions are smooth i.e. before shock forma-

tion [52]. The Chapman-Enskog expansion is divergent and by decreasing
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the truncation error one can get a better approximation of hydrodynamic

manifold for small Knudsen numbers. However, at the same time conse-

quent continuum equations (such as Burnett approximation) are divergent

and violate the basic physics behind the Boltzmann equation [56].

Ongoing studies in pure mathematics are carried out to answer (a)

whether it is possible in a mathematically rigorous way to obtain the macro-

scopic equations from the microscopic point of view, (b) and how to con-

struct such a manifold. The model reduction approaches aim at proposing

answers to the second question.

1.4 Outline of the thesis

The rest of the thesis is organized as follows (Fig. 1.2)
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Figure 1.2: Thesis in a nutshell

• Chapter 2 presents the basic notion of chemical kinetics equations

governing the dynamics of homogeneous reactive flows and the Slow

Invariant Manifold (SIM) concept is briefly discussed. The first sys-
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tematic approach proposed in this thesis for the construction of a

SIM, the global Relaxation Redistribution Method (gRRM) is then

presented. It is an extension of the RRM procedure, which can be re-

garded as an efficient and stable scheme for solving the film equation

of dynamics (see 2.2) where a discrete set of points is gradually re-

laxed towards the SIM. The algorithm is applied for the construction

of a one-dimensional SIM of a simple singularly-perturbed nonlinear

system model and the results are compared with those of the ILDM

slow manifold. gRRM is then applied to the detailed combustion

mechanism for hydrogen/air and two- and three-dimensional SIMs

are constructed. Finally, the SIM is used as a reduced model for

auto-ignition and laminar premixed flame of hydrogen-air mixtures.

• Chapter 3 is devoted to a geometrical approach in the scope of ther-

modynamics manifold category, called the Spectral Quasi-Equilibrium

Manifold (SQEM) method, for the construction of SIMs. SQEM is a

class of model reduction techniques for chemical kinetics based on the

entropy maximization under constraints built by the slowest eigen-

vectors at equilibrium. The method is first discussed and validated

through the Michaelis-Menten kinetic scheme, and the quality of the

reduction is discussed and related to the temporal evolution and the

gap between eigenvalues and Lyapunov exponents. SQEM is then ap-

plied to detailed reaction mechanisms for homogeneous mixtures of

hydrogen/air, syngas/air and methane/air, in an adiabatic constant

pressure reactor. The states of the system determined by SQEM are
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compared with those obtained by direct integration of the detailed

mechanism, and good agreement between the reduced and the detailed

descriptions is demonstrated. The SQEM reduced model of hydro-

gen/air combustion is also compared with another similar technique,

Rate-Controlled Constrained Equilibrium (RCCE). For the same num-

ber of representative variables, SQEM is found to provide a more

accurate description.

• In Chapter 4 we proposed a systematic approach for skeletal mecha-

nism generation based on the relative contribution of the elementary

reactions to the total entropy production. The notion of the entropy

production for chemical kinetics is briefly reviewed, and the approach

is applied to a database of solutions for homogeneous constant pres-

sure auto-ignition of n-heptane to construct two skeletal schemes for

different threshold values defining the important reactions contribut-

ing to the total entropy production. The accuracy of the skeletal

mechanisms is evaluated in spatially homogeneous systems for igni-

tion delay time and a single-zone engine model in a wide range of

thermodynamic conditions. High accuracy is also demonstrated for

the laminar speed and the flame structure of spatially-varying pre-

mixed flames.

• Chapter 5: The ability of the entropy production method to signifi-

cantly reduce the size and complexity of detailed mechanism enables

us to investigate the complex dynamics of large hydrocarbons where

the implementation of the comprehensive mechanism would require ex-
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1.4. Outline of the thesis

cessive computational cost. The dynamics of n-heptane/air mixtures

in perfectly-stirred-reactors (PSR) is investigated systematically using

bifurcation and stability analysis and time integration. In addition to

residence time, which is the well-studied “S-shape” curve in combus-

tion community, the effect of equivalence ratio, volumetric heat loss

and the simultaneous variation of residence time and inlet temperature

on the reactor state are investigated. Multiple ignition and extinction

turning points leading to steady state multiplicity and oscillatory be-

havior of both the strongly burning and the cool flames are found,

which can lead to oscillatory (dynamic) extinction. Two-parameter

continuations revealed isolas and co-dimension two bifurcations (cusp,

Bagdanov-Takens, and double Hopf). Particularly, the extension of

the bifurcation analysis to multiple parameters is owing to less com-

plex skeletal mechanism found in Chapter 4. The CSP method is

briefly presented and used along with entropy production analysis to

probe the complex kinetics at interesting points of the bifurcation

diagrams.

• Chapter 6: The non-equilibrium states of a thermodynamic system

can be described by the Boltzmann equation. The derivation of hy-

drodynamics from the kinetic description can be considered as con-

struction of a reduced model from the Boltzmann equation. As stated

in the recent review [53] : “The reduction from Boltzmann kinetics to

hydrodynamics may be split into three problems: existence of hydrody-

namics, the form of the hydrodynamic equations, and the relaxation of
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the Boltzmann kinetics to hydrodynamics.” In chapter 6 we present a

new approach for constructing the hydrodynamic manifold for infinite-

dimensional system. In the Chapman-Enskog approach convention-

ally the distribution function is expanded in terms of a small param-

eter (Knudsen number) to derive the Navier-Stokes equation and its

transport coefficients. The first-order expansion is valid for the slip-

flow regime (Kn. 0.1). By construction, the Chapman-Enskog ex-

pansion and consequently the Navier-Stokes equations fail for appre-

ciable Knudsen numbers. In Chapter 6 we address the second problem

raised from the Boltzmann kinetic reduction field by constructing the

semi-analytic hydrodynamic manifold for the one-dimensional diffu-

sion equation by non-perturbative extension. This approach has the

potential to extend the construction of hydrodynamic manifold from

the kinetic equation (Navier-Stokes type equations which are valid for

extended range of Knudsen number) to multi-dimensional flows.
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Chapter 2

The global Relaxation

Redistribution Method 1

2.1 Introduction

In this chapter we will discuss the first geometric approach we have proposed

for the construction of slow invariant manifolds.

Formally, the slow dynamics can be described by the film equation (see

Sec. 2.2), which in the general case can be solved iteratively starting from

an initial guess that is gradually relaxed to the slow manifold. The Method

of Invariant Grid (MIG) defines the slow manifold as a collection of discrete

points in concentration space, which lie on the steady solution of the film

equation [57].

In the spirit of the MIG, the Relaxation Redistribution Method (RRM)

1The content of the present chapter is published in Kooshkbaghi, M., Frouzakis,
C. E., Chiavazzo, E., Boulouchos, K., & Karlin, I. V. (2014). The global relaxation
redistribution method for reduction of combustion kinetics. The Journal of chemical
physics, 141(4), 044102.
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2. The global Relaxation Redistribution Method

was proposed as a way to construct slow manifolds of any dimension by

refining an initial guess (initial grid) until it converges to a neighborhood of

the SIM [58]. In its local realization, the stability of the RRM refinements

provides a criterion for finding the dimension of the local reduced model

[58]. This dimension may become large when extending the manifold to

cover the whole composition space (up to the full system dimension in

the hydrogen combustion example considered in [58]). As such, the local

formulation of RRM requires smart storage/retrieval tabulation methods

for computational efficiency.

In this chapter, we propose an RRM-based method for the construc-

tion and tabulation of manifolds of fixed pre-selected dimension. For this

purpose, an initial guess for the manifold is constructed based on the ther-

modynamic manifold found by Rate-Controlled Constrained Equilibrium

(RCCE), and the manifold boundary is kept fixed while the RRM algorithm

is applied to the interior points. For the region within the RCCE-defined

boundary where the slow dynamics can be described by a SIM with the

chosen dimension, the algorithm converges to the slow invariant manifold.

An indicator for the quality of the reduction is proposed based on a mea-

sure of the manifold invariance. For the region where a higher-dimensional

reduced description is required, the algorithm still converges to a manifold

which approximates the invariant manifold better than the RCCE manifold

of the same dimension. The algorithm is applied to hydrogen-air mixtures

and the tabulated reduced description is validated in homogeneous systems

as well as in a laminar premixed flame in Sec. 2.5.
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2.2. Slow invariant manifold: Concept and Construction

2.2 Slow invariant manifold: Concept and Con-

struction

Consider an autonomous system satisfying the Cauchy-Lipschitz existence

and uniqueness theorem with a single stable fixed point (unique equilibrium)

whose detailed (microscopic) dynamics are described by the evolution of its

state vector N(t) in a ns-dimensional phase space S, N(t) ∈ S ⊂ Rns ,

dN

dt
= f(N) (2.1)

where f is a vector valued function, f : S → Rns .

A domain U ⊂ S is a positively invariant manifold if every trajectory of

system (2.1) starting on U at time t0 remains on U for any t > t0. Therefore,

N(t0) ∈ U implies N(t) ∈ U for all later times t > t0.

The dynamics of (2.1) is typically characterized by different time scales.

For significant time scale disparity, after an initial transient, trajectories are

quickly attracted to a lower-dimensional manifold where they continue to

evolve at a slower time scale towards the steady state Neq ∈ S. This

positively-invariant manifold is the SIM [59], and its construction can be

based on the definition of fast and slow sub-spaces within the phase space

[60–62].

Neglecting the initial fast transient, the long-time dynamics can be

described by a (possibly significantly) smaller number of the slowly-evolving

macroscopic variables ξ, which can be used to parametrize the SIM. The
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2. The global Relaxation Redistribution Method

nd < ns macroscopic variables ξ belong to an nd-dimensional space Ξ, and

can be used for the description of the reduced dynamics of (2.1). The

manifold parametrization space Ξ can be spanned by different combinations

of the state variables, N ∈ S. A microscopic state N located on the low-

dimensional manifold is shown schematically in Fig. 2.1(a). More formally,

(a) (b)

Figure 2.1: (a) Schematic of the motion decomposition which is exploited
in the construction of the slow manifold; (b) Relaxation Redistribution
algorithm: the effect of slow motions are neutralized via redistribution.

any point x on W satisfies x = F (ξ) where F : Ξ→ S maps points ξ ∈ Ξ

in the manifold parametrization space onto the corresponding point on the

manifold W which is embedded in the phase space S (see [59]).

The evolution of a state N can be decomposed into the slow component

along TW, the tangent space of W, and its complement in the transverse

direction (Fig. 2.1(a)),

f(N(ξ)) = f(N(ξ))‖TW + f(N(ξ))⊥TW (2.2)
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2.2. Slow invariant manifold: Concept and Construction

The slow and fast components are defined, respectively, as

f(N(ξ))‖TW = Pf(N(ξ)) (2.3)

f(N(ξ))⊥TW = ∆(N(ξ)) = f(N(ξ))−Pf(N(ξ)) (2.4)

in terms of an ns × ns projection matrix P and the defect of invariance

∆(N(ξ)).

By definition, W is a positively-invariant manifold if any state that is

initially on W remains on it during the subsequent time evolution. Hence,

relaxation will only proceed along the tangent space and the normal com-

ponent should be zero,

∆(N(ξ)) = 0, ξ ∈ Ξ (2.5)

Equation (2.5) is known as the invariance condition, and can be solved for

the unknown slow invariant manifold. In the method of invariant manifold

(MIM), the SIM is the stable solution of the so-called film extension of

dynamics [59],

dN(ξ)

dt
= ∆(N(ξ)) (2.6)

which defines an evolutionary process guiding an initial guess for the man-

ifold towards the slow invariant manifold. In numerical realizations, mani-

folds are usually represented by a grid (discrete set of points), as proposed

in the method of invariant grid (MIG) [57]. Due to the locality of MIM

construction, we make no further distinction between manifold and grid.
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2. The global Relaxation Redistribution Method

If the initial grid is subjected to the system dynamics, the distance

between the grid nodes shrinks and the whole grid contracts to a neighbor-

hood around the equilibrium state. The key idea of RRM is to alternate a

relaxation step with an appropriate movement that counterbalances shrink-

ing. One iteration step of RRM is shown schematically in Fig. 2.1(b). After

relaxation, the nodes of the initial grid (filled circles) evolve to different posi-

tions (open circles) and the macroscopic coordinates change. The increased

density of the grid points close to equilibrium can result in a reduction of

the grid spacing. To prevent this, the redistribution step brings the macro-

scopic coordinates ξ back to their previous values by interpolation between

the inner relaxed states and extrapolation for grid points outside the con-

tracted boundaries. The converged solution is the manifold containing all

the states for which further relaxations result in movement only along the

manifold.

In order to clarify the aforementioned notions, the singularly-perturbed

dynamical system proposed in [63] is considered with N = (x, y)T

dx

dt
= 2− x− y (2.7a)

dy

dt
= γ(
√
x− y) (2.7b)

For x(t), y(t) ∈ R, x(t) ≥ 0 and γ � 1, the system evolves from any initial

condition (x0, y0) towards the fixed point at (1, 1).

For γ = 20, choosing ξ = x to parametrize the manifold and y = 1− x

as the initial grid, after a single integration step (relaxation) with δt = 0.07,
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2.2. Slow invariant manifold: Concept and Construction

the initial grid (open squares) contracts significantly (Fig. 2.2(a), open cir-

cles). Redistribution is then applied to find the y values at the original

locations of the parameterizing macroscopic coordinates by linear interpola-

tion between relaxed states on the interior grid and linear extrapolation at

the boundary (two leftmost star symbols). The RRM converges to the slow
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Figure 2.2: (a) The effect of applying a single RRM step on the nodes of
the initial grid; (b) comparison between ILDM manifold, RRM manifold
and sample trajectories γ = 20.

invariant manifold after 10 iterations for a tolerance of 10−4 (Fig. 2.2(b),

solid line).

The defect of invariance ∆ can be used as an indicator for the time

after which the reduced description becomes accurate. For the chosen

parametrization, the kernel of the projector P is (1, 0). P is spanned by

its image, which is the tangent subspace to the manifold, TW = imP, and

the orthogonal to the kernel. Hence,

P =

 1

dy
dx

 (1, 0) =

 1 0

dy
dx

0

 (2.8)
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2. The global Relaxation Redistribution Method

From (2.4), the defect of invariance is then

∆ = (I − P )f =

 0

−dy(ξ)
dξ

(2− ξ − y(ξ)) + γ
(√

ξ − y(ξ)
)
 (2.9)

In this case, the manifold is smooth and dy(ξ)
dξ

along the manifold can be

accurately approximated numerically by second-order central differences.

In order to compare the manifold and its invariance with the ILDM,

the Jacobian J of (2.7)

J =

 −1 −1

γ
2
√
x
−γ

 (2.10)

is needed. The symmetrized Jacobian J sym = JJT , which offers the advan-

tage of real eigenvalues, λ, and orthogonal eigenvectors, v, can be used to

define the fast and slow invariant subspaces of (2.7) [13, 64]. Let us define

the matrix V with a column partitioning given by the eigenvectors of J sym

ordered according to decreasing magnitude of the corresponding eigenval-

ues, V = (vslow,vfast) and its inverse V −1 =

(
ṽslow, ṽfast

)T
. For γ � 1,

the ILDM manifold, yILDM , can be obtained by setting the inner product

of ṽfast with f [42, 64] equal to zero. Assuming that y is the intrinsic fast

variable, the approximate form of slow manifold is

y =
√
x. (2.11)

The ILDM manifold is plotted in Fig. 2.2(b) (dashed line) together with
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2.2. Slow invariant manifold: Concept and Construction

several trajectories (dot-dashed lines) and the RRM manifold (solid line).

Trajectories initialized at the leftmost boundary of the ILDM (open squares)

and RRM (open circles) manifolds are also shown. In this case, the ILDM

manifold is neither invariant nor slow, except close to the steady state.

On the other hand, different solution trajectories are quickly attracted

(Fig. 2.2(b)) to the RRM manifold, which is also found to be invariant.

For the initial condition (x0, y0) = (0.1, 1.0), the temporal evolution of

the state and the Euclidean norm of ∆ for the RRM and ILDM manifolds

of system (2.7) are plotted in Fig. 2.3(a). The defect of invariance for the
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Figure 2.3: Analysis of ILDM and RRM manifold for (2.7). (a) Defects of
invariance and temporal evolution of the state for a sample trajectory (b)
Sample trajectory, ILDM and RRM manifolds in phase space for γ = 20.

RRM manifold is an order of magnitude lower than for ILDM, implying

that the RRM manifold is a better approximation for the SIM. As it can

be seen from Fig. 2.3(b), the trajectory is attracted to the RRM manifold

at (x, y) ' (0.4, 0.6). At this location, the defect of invariance for the RRM

manifold is less than 0.03, while for ILDM it is approximately 0.6.
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2. The global Relaxation Redistribution Method

2.3 Chemical kinetics

Consider a homogeneous mixture of ideal gases consisting of ns species and

ne elements reacting under constant pressure p in a closed system. The

number of moles are represented by the vector N = (N1, N2, · · · , Nns)
T

and the change in the chemical composition of the species, results from nr

reversible reactions between the ns reactants Mi

ns∑
i=1

ν ′ikMi 

ns∑
i=1

ν ′′ikMi, k = 1, · · · , nr (2.12)

where ν ′ik and ν ′′ik are the stoichiometric coefficients of species i in reaction k

for the reactants and products, respectively. The rate of progress of reaction

k is

qk = kfk

ns∏
i=1

[Xi]
ν′ik − krk

ns∏
i=1

[Xi]
ν′′ik , k = 1, · · · , nr (2.13)

where [Xi] denotes the molar concentration of species i and kfk and krk are

the forward and reverse rate constants having the modified Arrhenius form

kfk = AkT
βk exp

(−Ek
RcT

)
(2.14)

with Ak, βk, Ek and Rc being the pre-exponential factor, temperature ex-

ponent, activation energy and ideal gas constant, respectively. The forward

and reverse rate constants are related via the equilibrium constant, Kck(T )

krk =
kfk
Kck

(2.15)
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2.3. Chemical kinetics

The rate equation for species i is given by

d[Xi]

dt
=

r∑
k=1

(ν ′′ik − ν ′ik)qk, i = 1, · · · , ns (2.16)

Using the reactor volume V , the change in the mole number of species i can

be rewritten in the form of equation (2.1)

dN

dt
=
d[VX]

dt
= f(N) (2.17)

The ne elemental conservation constraints can be expressed in terms of an

ne × ns elemental constraints matrix, E, as [65]

EN = ξe (2.18)

where ξe is specified by the initial composition and Eji denotes the number

of atoms of element j in species i.

In a constant pressure adiabatic system the reactions proceed at con-

stant enthalpy and the temperature evolution is governed by

dT

dt
= − 1

ρcp
Σns
i=1hiω̇iWi

where, ρ is the mixture density and Wi, hi and ω̇i molecular weight, enthalpy

and production/destruction rate of species i. According to the second law

of thermodynamics, the system under consideration is equipped with a con-

cave state function, the entropy S, which attains its global maximum at

equilibrium. The negative of entropy, which for ideal gases mixtures under
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2. The global Relaxation Redistribution Method

isobaric and isenthalpic conditions takes the form [58]

G = −S = −
∑ns

i=1 Xi

(
si(T )−Rc ln(Xi)−Rc ln

(
p

pref

))
W

(2.19)

is a thermodynamic Lyapunov function for the dynamics defined by (2.17)

in terms of si, the specific entropy of species i, W =
∑ns

i=1XiWi the mean

molecular weight, p and pref , the system and reference pressure; Xi =

Ni/
∑ns

j=1Nj is the mole fraction of species i.

The equilibrium composition, Neq, is the solution of the constrained

minimization problem:

min G

s.t. EN = ξe
(2.20)

This Lyapunov function can be exploited not only to compute the equilib-

rium, but also for the derivation of the reduced description as described in

the next section.

2.4 Construction of the reduced description

The local realization of the Relaxation Redistribution Method [58] con-

structs and tabulates SIMs with dimension nd adaptively varying in dif-

ferent regions of the phase space. Adaptation of the dimension is based on

the failure of the algorithm to converge after a fixed number of iterations,

which is taken as an indicator that the SIM dimension should be increased.

However, the computational cost associated with the manifold repre-

sentation on a grid and the retrieval of information from high-dimensional
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2.4. Construction of the reduced description

tables imposes restrictions on the dimensionality of the slow manifold, the

target being a two- or three-dimensional table [18]. A low-dimensional SIM

is usually limited to a small neighborhood of phase space around the equilib-

rium point, leaving open the problem of its extension to cover all admissible

states [66].

In this work, the global realization of the RRM with an a priori chosen

manifold dimension is employed. In particular, an RCCE manifold, which

provides ‘good’ manifolds as discussed in the introduction, with dimension

up to three is used to define the initial SIM. The initial approximation is

subsequently refined using RRM. For regions of the phase space in the neigh-

borhood of the equilibrium, the method converges to the SIM. For states

farther away, where no SIM with the chosen dimension exists, the refined

Quasi-Equiibrium Manifold (QEM) defined below provides an accurate ex-

tension as will be shown in section 2.5. In addition to the parametrization

of the SIM, the initial RCCE manifold defines the boundaries which are

kept fixed during the application of RRM.

2.4.1 Initialization: the Quasi-Equilibrium Manifold

For systems equipped with a Lyapunov function, a reduced description can

be obtained based on the notion of the Quasi-Equilibrium Manifold (QEM)

[59] (known as Constrained Equilibrium Manifold (CEM) in the combustion

literature [44, 45]). QEM assumes that the system relaxes to equilibrium

through a sequence of quasi-equilibrium states at a rate controlled by a

set of appropriate slowly-varying constraints ξ [44, 45, 59, 67]. Since the
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2. The global Relaxation Redistribution Method

Lyapunov function G decreases in time, a QEM can be interpreted as the

constrained minimum of G.

In addition to the elemental conservation constraints (Eq. (2.18)), QEM

imposes a priori nd linear constraints on the system state defining the slow

macroscopic variables

ξd = (Bd)N (2.21)

Bd is an nd×ns matrix with rows obtained from the coefficients of the linear

combinations of the number of moles providing the nd slow parameterizing

variables ξd. Thus, the total number of constraints amounts to nc = ne +

nd, and the QEM is the map NQEM(ξ), obtained by solving the following

constrained convex minimization problem

min G

s.t. BN = ξ
(2.22)

Here, B = [E Bd] is the nc × ns constraint matrix and ξ = [ξe ξd] the

constraint vector with nc elements. The ns-dimensional state N can then be

parametrized by the nc variables ξ. For model reduction purposes, nc � ns.

In closed reactive systems, the elemental mole numbers must be con-

served. Hence, EN = ξe is fixed upon definition of the fresh mixture con-

dition. The constraint matrix Bd can be selected on the basis of numerical

results of detailed solutions for similar problems, as suggested for example

in [68]. Alternatively, a suitable parametrization can be extracted using the

spectral decomposition of the Jacobian matrix evaluated at the equilibrium

44



2.4. Construction of the reduced description

point [41]. It should be pointed out that a QEM is typically neither an

invariant nor a slow manifold [67].

The choice of a good set of constraints can be challenging. In addi-

tion to intuition and the mentioned approaches, CSP analysis of detailed

simulations can aid in the selection [68]. The Level Of Importance (LOI),

which finds the species associated with the short time scales by means of a

combined species lifetime and sensitivity parameters, has also been used in

the RCCE context [69]. In general, the constraints must [70,71]

(a) be linearly independent

(b) constrained initial state should approximate the initial composition

(c) constrain global reactions in which reactants or intermediates go di-

rectly to products

(d) determine the energy and entropy of the system within experimental

accuracy.

The RCCE method, which is based on the QEM approach can be used

either as proposed originally [72–74], or in combination with other methods

[75]. The most commonly employed slowly-changing constraints are the

total number of moles (TM), the total number of radicals referred to active

valence (AV), and free oxygen (FO), which refers to the reactions where the

O-O bond is broken [67]. These RCCE linear constraints for hydrogen/air

combustion are specified in Table 2.1. The RCCE manifold is unique and

infinitely differentiable, and can be used even for states far from equilibrium

[65, 70]. In this chapter, we exploit the QEM notion only to construct the
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2. The global Relaxation Redistribution Method

Table 2.1: Matrix Bd for the H2/air mixture

Reduced variable H2 N2 H O OH O2 H2O HO2 H2O2

ξd1=TM 1 1 1 1 1 1 1 1 1
ξd2=AV 0 0 1 2 1 0 0 0 0
ξd3=FO 0 0 0 1 1 0 1 0 0

initial approximation of the SIM and to define the manifold boundaries.

2.4.2 The global Relaxation Redistribution algorithm

As discussed in section 2.2, the boundaries of the initial grid shrink during

relaxation. In the local RRM, reconstruction of the boundary points by

re-stretching the relaxed grid to the fixed boundaries is done by linear ex-

trapolation. However, such an approach cannot always guarantee physically

meaningful values for the species concentrations. In order to avoid this dif-

ficulty, the boundary of the SIM can be fixed to the initial guess provided

by the QEM, and the RRM procedure is applied only to the interior grid

points.

The embarrassingly simple steps for the computation of the global man-

ifold proceed as follows:

1. Choose the manifold dimension nd and select the parameterizing vari-

ables ξi

2. Construct the nd-dimensional QEM, NQEM(ξd), by solving the min-

imization problem (2.22). This manifold corresponds to construct-

ing the initial grid indicated by the solid line with filled circles in

Fig. 2.1(b).
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2.4. Construction of the reduced description

3. Fix the grid boundaries to the boundaries of QEM

4. Relax the interior grid nodes by integrating

dN

dt
= f(NQEM(ξd)) (2.23)

for a fixed time step ∆t to obtain Nrelax.

As shown schematically in Fig. 2.1(b) (filled circles relaxing towards

the open circles), this equation expresses the temporal evolution of

composition confined onto the approximation of the SIM. The new

locations of the relaxed nodes in the manifold parametrization space

Ξ are then obtained from

ξdr = (Bd)Nrelax (2.24)

5. Redistribute the grid nodes back to the original locations in the man-

ifold parametrization space

Nrelax(ξdr)→ NRRM(ξd) (2.25)

using interpolation through the scattered relaxed nodes. This is simi-

lar to finding the filled squares in Fig. 2.1(b), with the difference that

boundaries are fixed and there is no extrapolation between the relaxed

nodes.

6. Repeat steps 4-5 until the grid points do not change appreciably.
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It should be pointed out that the reduced descriptions obtained by this

algorithm are closely related to the ICE-PIC approach suggested by Ren et

al. in [46], as both procedures construct invariant manifolds forced to pass

through the fixed boundary points (QEM boundary points).

2.4.3 Rate equations for the slow variables

Once the slow invariant manifold is constructed, the temporal evolution of

the reduced system along the SIM can be recast in the following general

form in terms of the macroscopic slow variables ξd chosen to parametrize

the SIM:

dξd

dt
= (Bd)Pf(NRRM(ξd)) (2.26)

If the slow invariant manifold is known accurately, the vector field f is per-

fectly aligned with the manifold’s tangent space and the state would never

depart from the manifold. In most computational applications of practical

interest, however, SIM approximations with different levels of accuracy are

employed, and the chosen parametrization cannot completely decouple the

fast and slow components. In these cases, (Bd)f does not lie on the tangent

space of the SIM and a projector P is needed to bring the state back to the

manifold.

Different projectors have been proposed in the literature. The ILDM

projector recovers the fast subspace to leading order [76], and the kernel

of the projector is constructed using the fastest eigenvectors of the local

Jacobian. Higher-order approximations can be constructed using the CSP

basis vectors. Details on the ILDM and CSP projectors can be found in
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[42, 77]. Another option for P is the thermodynamic projector [78], which

can be constructed on the basis of the local tangent space to the SIM and

the derivatives of a thermodynamic Lyapunov function (2.19) [79].

In the classical RCCE method, it is assumed that states of the system

always remain on the QEM and the rate equations for the slow parame-

terizing variables is close to the tangent space of the manifold [67]. The

ns-dimensional composition space is decomposed into the nd-dimensional

represented subspace spanned by the rows of Bd and its orthogonal comple-

ment, the unrepresented subspace of dimension ns − nd. The projection is

illustrated schematically in Fig. 2.4. The projection matrix then becomes

the ns×ns-dimensional identity matrix which implies that the rate of change

in the unrepresented subspace is negligible. Therefore we rely upon the fact

that fast motions are expected to mostly occur in the null space of the

Bd matrix. The same approach was used in the applications of the results

section. For a more detailed analysis of this projector see [75].

The following steps describe the implementation of reduced chemistry

in a reacting flow simulation: (a) From the specified composition at time

tn, Nn = N(tn), and the thermodynamic conditions, the values for the

parameterizing variables can be found using equation (2.21),

(Bd)Nn = ξdn (2.27)

(b) The rate equations (2.26) for ξd, are advanced in time to find ξdn+1,

where NRRM
n are the projected values of N(tn) on the SIM.
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2. The global Relaxation Redistribution Method

Figure 2.4: Project in the unrepresented subspace of RRM manifold. The
projection is same as classical RCCE [67]

The reduced model can be tabulated in terms of either the reduced

state NRRM or of the projected right hand side of the evolution equations

(Bd)f(NRRM). In the former case, interpolation of the tabulated data

is used to retrieve the composition vector corresponding to ξdn+1. In the

latter, the right hand side of (2.26) is obtained directly to proceed with the

integration of the reduced system and the compositions can be obtained

separately in a post-processing step.

The overall computational cost for the integration of the full system of

ns differential equations is thus replaced by the cost of integrating nd differ-

ential equations and of interpolation. The following practical issues should

be pointed out: (i) Choosing the appropriate constraints with respect to the

initial composition is important. The kernel of Bd should not be spanned

by the f(NRRM
n (ξd)) vector, since in that case dξd

dt
becomes zero and there is

no temporal evolution of ξd; (ii) Interpolation can affect the result strongly
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as shown in [80]. This effect can be controlled by refining the table and/or

using appropriate interpolation methods, albeit at higher computational

cost; (iii) By construction, the approach presented here guarantees that the

equilibrium will be accurately captured by the reduced description. This

appears to not always be the case with reduced mechanisms proposed in

the literature; (iv) In problems like the ignition delay time considered in the

next section, the projection of the initial state on the manifold is crucial

for the comparison with the prediction of the detailed reaction mechanism.

In the literature, the comparison is often made by taking the initial state

to lie on the manifold. In the auto-ignition validation of the next section

good results are obtained by comparing the detailed solution with those ob-

tained by projecting the initial state on the manifold using the constrained

equilibrium assumption.

2.5 Validation and discussion

2.5.1 Auto-ignition of homogeneous mixtures

The global RRM method is applied to a homogeneous H2/air mixture using

the detailed reaction mechanism of Li et al. [17]. (ns = 9 species and 21

reactions) at atmospheric pressure and different initial temperatures T0.

The initial reactant composition is that of a stoichiometric mixture

(N0
H2

= 1.0, N0
O2

= 0.5 and N0
N2

= 1.881 mole), while the remaining species

are assigned the chemically insignificant positive values N = 10−12 mole to

ensure strictly positive species compositions at the constrained equilibrium
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2. The global Relaxation Redistribution Method

state and guarantee the existence and uniqueness of the solution to the

minimization problem (2.22) [67].

The equilibrium point (steady state) can be computed by minimizing

the Gibbs function under constant pressure and enthalpy. Then, the ini-

tial and equilibrium states are projected on the manifold parametrization

space, Ξ, using (2.21). Different combinations of constraints for hydrogen

combustion have been investigated in the literature [67, 70]. The TM and

AV constraints (Table 2.1) have been found to give better agreement with

respect to ignition delay times for a wide range of thermodynamic condi-

tions and are chosen for the ξ parameterization. Starting from a sufficiently

large range in the parametrization space that contains the initial and steady

states, the CEQ code [81,82] is used for the construction of the RCCE-based

initial manifold as discussed in section 2.4.2. The code computes the con-

strained equilibrium state by minimizing the Gibbs function under fixed

pressure and enthalpy; the projection of the computed initial manifold on

Ξ is shown in Fig. 2.5. The boundary nodes are then fixed, and the RRM

procedure is applied to the interior nodes. For the redistribution step, the

linear Shepard method implemented in the SHEPPACK package [83] is used

for interpolation,

NRRM(ξd) =

∑ngp
k=1 αk(ξ

d)Nrelax(ξdr)∑ngp
k=1 αk(ξ

d)
(2.28)

where ngp is the total number of grid points and the weights αk(ξ
d) are
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Figure 2.5: Projection of manifold (grid) onto Ξ. The initial grid should
contain both the fresh mixture and equilibrium point, and extend in the
manifold parametrization space as far as the QEM convex minimization
calculations converge.

defined as

αk(ξ
d) =

1

‖ξd − ξd(k)
r ‖2

2

(2.29)

For initial temperature T0 = 1500 K, the two-dimensional RCCE and global

RRM manifolds for selected species are plotted in Fig. 2.6 together with the

trajectory obtained using the detailed mechanism (thick solid line). For the

major species, the global RRM manifold brings only a slight improvement

over the RCCE manifold, while for HO2 and H2O2 the improvement is

significant. As it can be seen in Fig. 2.6, the RCCE manifold is not invariant.

This is more clearly seen in the temporal evolution of the temperature and
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Figure 2.6: Comparison of the RCCE (left column) and RRM (right column)
manifolds for T0 = 1500 K. (�: fresh mixture; ?: equilibrium point; −:
detailed kinetics trajectory).
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species mass fractions, plotted in Fig. 2.7. Good agreement is found with

the detailed description for the temperature and major reactants as well as

the radicals with high enough concentration. Far away from equilibrium,

the RCCE manifold strongly underpredicts the concentration of HO2 and

H2O2.
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Figure 2.7: Time histories of the temperature and species mass fractions
for H2/air autoignition with unburnt temperature T0 = 1500K.

The time history of the weighted root mean square norm as used

for error estimation in [84] of the defect of invariance vector is plotted

in Fig. 2.8(a) together with the temperature profiles computed using the

detailed and reduced descriptions. After 40µs, the defect drops below 10−4
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and the detailed and reduced models are in good agreement. This illustrates

that the defect of invariance is a convenient indicator of the accuracy of the

reduced description. During the initial transient, a higher-dimensional man-

ifold should be used.

The number of right hand side function evaluations nfe during integra-

tion can be used as an indicator for the stiffness. Figure 2.8(b) shows the

temperature and nfe obtained by using the stiff ODE integrator DVODE [84]

with an output time step δt = 10−5 (the integrator adapts the time step

during integration from time t to t + dt). The initial composition for the

detailed mechanism was the stoichiometric mixture, while for the reduced

description its projection on the RRM manifold was used. With the excep-

tion of a single time instant close to ignition, nfe is lower for the reduced

model during the whole integration interval.

At a lower initial temperature T0 = 1000 K, the 2-D manifold can no

longer provide an accurate reduced description (Fig. 2.9). The construction

of a 3-D slow manifold is straightforward starting from an initial manifold

constructed using all constraints of Table 2.1. The results obtained with

RCCE with two (open squares) and three (open circles) constraints, the

RRM 2-D (dot-dashed line) and 3-D (dashed line) manifolds are compared

with the detailed evolution (solid line) in Fig. 2.9. While the 3-D RCCE

manifold results in small improvement, the increase in the manifold dimen-

sion of the RRM manifold leads to very good agreement with respect to the

prediction accuracy of the ignition delay time and the temporal evolution

of temperature and species, with the exception of the YH2O2 profile which
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Figure 2.8: (a) Comparison of the temperature profiles obtained with the
detailed and the reduced 2-D RRM description and evolution of the norm
of the defect of invariance for T0 = 1500 K; (b) Comparison of temperature
evolution and number of source term evaluations nfe obtained with the
detailed mechanism and the reduced 2-D RRM description at T0 = 1500 K.

displays a noticeable deviation from the detailed mechanism profile. The

ignition delay times, τig, defined as the time corresponding to the inflection

point of the temperate profile are summarized in Table 2.2. The magnitude

Table 2.2: Comparison of ignition delay times deduced from detailed and
reduced models.

Method τig(sec)
Detailed 0.000213

RCCE TM+AV 0.000169
RCCE TM+AV+FO 0.000178

RRM 2D 0.000170
RRM 3D 0.000207

of the real part of the six non-trivial eigenvalues of the Jacobian matrix

during the temporal evolution for T0 = 1000 K and T0 = 1500 K are re-

ported in Fig. 2.10. The absolute value of the inverse of the eigenvalues
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Figure 2.9: Temperature and species mass fractions as the function of time
for H2/air auto-ignition, T0 = 1000 K. Detailed, RCCE with 2 Constraints,
RCCE with 3 Constraints, RRM 2D manifold, RRM 3D manifold are com-
pared.

determine the time scales of the chemical modes and the ratio λf/λs of

the most to the less negative eigenvalues, an estimation for stiffness. For

T0 = 1000 K, the gap is λf/λs ' 8.5× 108, while for T0 = 1500K the ratio

becomes λf/λs ' 5.6 × 105, reflecting the higher stiffness at lower temper-

atures. Eigenvalues with positive real part indicating explosive behavior

were found initially in both cases and time intervals where the eigenvalues

cross and become complex pairs were observed during the evolution from

the initial to the equilibrium state. Manifolds of higher dimensions would
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Figure 2.10: Temporal evolution of the six non-trivial eigenvalues of the
Jacobian along the solution trajectory: (a) T0 = 1000 K, (b) T0 = 1500 K.

be needed to capture more accurately the reduced dynamics in these inter-

vals, as was done in the adaptive version of RRM [58]. Careful examination

of Fig. 2.10 for T0 = 1500 K reveals that eigenvalue crossings correspond to

jumps in (a) the defect of invariance vector (Fig. 2.8(a)) and (b) the num-

ber of source term evaluations nfe (Fig. 2.8(b)). The effect of eigenvalues

crossing on the quality of reduced model is discussed in [85]. It nevertheless

appears that these short intervals do not affect the quality of the manifold

significantly.

2.5.2 Premixed laminar flame

The steady, atmospheric, adiabatic, one-dimensional laminar premixed flame

of a stoichiometric hydrogen/air mixture and multi-component transport

properties was considered in order to study the ability of the 2-D RRM

manifold constructed from the homogeneous auto-ignition of an unburnt

mixture at Tu = 700 K to reconstruct the unrepresented variables in a case

where transport phenomena play a dominant role. A similar procedure was
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used for the validation of the ICE-PIC manifold by Ren el al. [46].

In this case, the manifold parametrization becomes important since

in the general case of non-unity Lewis numbers it is difficult to solve the

partial differential equations even when the parameterizing variables are lin-

ear combinations of the original variables [86]. Here, the quasi-equilibrium

manifold was constructed using the mole fractions of H2O and H2 as slow

constraints (ξ1 = XH2O and ξ2 = XH2). The RRM refinement process was

applied starting from the QEM to find the global two dimensional manifold

for Tu = 700 K. The species concentrations as a function of the distance,
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Figure 2.11: Comparison of the temperature and species mole fractions pro-
files computed by PREMIX (lines) and reconstructed using the 2-D RRM
manifold (symbols) for unburnt mixture at T0 = 700 K.
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x, is computed using PREMIX from the CHEMKIN application suite [87].

The local values of XH2 and XH2O from the detailed chemistry 1-D flame

structure were used to reconstruct the remaining species using the RRM

manifold. The agreement for the major species and temperature between

the detailed solution and the reconstruction is excellent (Fig. 2.11). The

largest differences are observed for the H2O2 species and they can be mainly

attributed to the incorrectly predicted value of QEM at the“cold”(unburned

mixture) boundary. In addition to low dimensionality effects, molecular dif-

fusion in laminar flames can drive the compositions away from the manifold,

potentially contributing in the differences observed in the O and H radicals

profiles. Similar observations are reported in the literature, where different

methods of projecting the diffusion term onto the manifold were studied

(see, for example, [76,88])

2.6 Summary and Conclusions

In this chapter we presented an algorithm based on the Relaxation Redistri-

bution Method (RRM) for the construction of the Slow Invariant Manifold

(SIM) of an a priori chosen dimension which covers a large fraction of the

admissible composition space that includes the equilibrium as well as the

initial state.

The manifold parametrization and boundaries are determined with

the help of the Rate Controlled Constrained Equilibrium (RCCE) method,

which also provides the initial guess for the SIM. The guess is iteratively

refined and the converged manifold is tabulated. The method is easy to
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implement and robust to use for the construction of reduced manifolds of

high dimensionality, which were found to be invariant over extended regions

of the admissible space. A criterion based on the departure from invariance

is proposed to find the region over which the reduced description is valid.

The accuracy of the method was assessed by comparing trajectories for

auto-ignition calculations of homogeneous H2/air mixtures at different ini-

tial temperatures T0. At T0 = 1500 K, a 2-D manifold is found to capture

accurately both the ignition delay time and the temporal evolution of all

the species and shows significant improvement with respect to the low con-

centration species (HO2 and H2O2) compared to an RCCE manifold. At

T0=1000 K, a 3-D manifold is needed to reproduce accurately the detailed

dynamics with the exception of the pre-ignition profiles of H2O2 while, con-

structing the 3-D manifold is barely reported in chemical kinetics reduction

literature.

The significant reduction in the number of source term evaluations

indicates that the reduced descriptions are less stiff. However, similar to

all other reduction methods based on tabulation, fast table searching and

interpolation algorithms are essential for the overall efficiency of the reduced

scheme.

The 2-D RRM manifold can reconstruct the laminar premixed flame

structure fairly accurately compared with the results obtained with the

detailed mechanism, indicating that it can be used in multidimensional

simulations where transport properties play a dominant role.
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Chapter 3

Spectral Quasi Equilibrium

Manifold

3.1 Introduction

Entropy and entropy production are two well-studied thermodynamic func-

tions, which can be more informative than the original system dynamics.

Entropy can be considered as a Lyapunov function of a closed system which

can create a logical bridge between thermodynamics and dynamical sys-

tem analysis. For example, trajectories with minimal entropy production

have been considered as candidates for one-dimensional slow manifolds [47].

On the other hand, it can be assumed that physical and chemical kinetic

systems evolve in the vicinity of Quasi Equilibrium States (QES), where

entropy is maximized under certain constraints [59].

In physical kinetic, the works on hydrodynamic limits of the Boltz-

mann equation is an example of reducing the infinite system of moments of

particle distribution to a smaller number of representative moments. The
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closure of this infinite system should approximate the hierarchy of moments,

and can be found by assuming that the particle distribution is near the local

equilibrium [55]. The closed system of moments can be derived by a non-

perturbative systematic approach, assuming that the distribution is mostly

embedded in the low dimensional Quasi Equilibrium Manifold (QEM) of

the system [89–91].

In chemical kinetics, as explained in chapter 2, Rate-Controlled Con-

strained Equilibrium (RCCE) is a well known QEM-based method, which

uses the maximum entropy principle and assumes that: (i) slow reactions

impose constraints on the system composition which correspond to slow re-

laxation towards equilibrium, and (ii) fast reactions equilibrate the system.

Consequently, the system relaxes towards chemical equilibrium through a

sequence of constrained equilibrium states (which belong to QEM) at a rate

controlled by the slowly changing constraints [45,70,74].

Originally, chemical intuition guided by numerical simulations were

used for the selection of constraints in the RCCE method [70], implying

that good knowledge of detailed chemical kinetics is necessary for finding the

class of slow and fast reactions. Other studies, tried to determine the species

which must be retained in the reduced model based on timescale analysis

(e.g Level of Importance (LOI) [69]), generalizing the parametrization of

the RCCE manifold for any comprehensive reaction mechanism.

The majority of fast time scales are exhausted around the equilibrium

point, therefore a low dimensional SIM is limited around that state. To

cover the entire admissible space with a uniform SIM, one should find a way
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to extend the manifold. The quasi-equilibrium manifold has been proposed

in the literature both for species reconstruction (manifold extension) for

the states far from equilibrium and for obtaining the manifold boundaries

[46,92].

In the spirit of the QEM, the Spectral Quasi Equilibrium Manifold

(SQEM) has been employed as an initial manifold which is subsequently

refined towards the SIM [13,41,93]. The method has been applied to small

systems of ODEs (up to hydrogen combustion which is effectively six di-

mensional). In this chapter, the ability of the spectral quasi-equilibrium

method to provide general constraints, which do not resort on intuition, is

investigated and applied for the construction of quasi-equilibrium manifolds

for hydrogen, syngas and methane combustion.

The method is first validated through the two-dimensional Michaelis-

Menten kinetic scheme, where the quality of the reduction is discussed and

related to the temporal evolution and the gap in the spectra of eigenvalues

and Lyapunov exponents. In addition to simple enzyme kinetics, the ability

of the method is explored for detailed combustion mechanisms. The tem-

poral evolution of temperature and species concentrations deduced from re-

duced and detailed models are used as indicators of the quality of reduction,

showing the potential of SQEM for the reconstruction of species concentra-

tions and temperature profiles. The comparison also shows that the spectral

constraints show better agreement with the detailed model compared to the

classical RCCE constraints.
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3.2 Equilibrium and quasi-equilibrium

Lyapunov functions can be more informative and fundamental than the

original system (2.17) itself. For example, even for dynamical systems whose

detailed behavior is unpredictable, Lyapunov functions can be used as the

quantity, measuring how “complex” or unpredictable, the motion is [94–96].

The entropy S, as the distinguished Lyapunov function, which mono-

tonically increases along all possible trajectories in phase space is widely

used in physical and chemical kinetics to describe different features of the

system. Because entropy is increasing monotonically through the relaxation,

the global equilibrium state corresponds to the global maximum entropy

state. Therefore, instead of integrating the system for long (more formally

infinite) time, one can find the equilibrium via maximization of the entropy.

The equilibrium composition, N eq, is the constrained minimum of

the thermodynamic potential G(N , p, T ) (Eq. (2.20)). The concept of the

Quasi-Equilibrium Manifold stems from Grad’s approximation for the clo-

sure of the system of moments. “Of course, to any degree of approximation,

these solutions approximate to only a small part of the manifold of solutions

of the Boltzmann equation [55].” The QEM is the loci of states NQEM , ob-

tained by solving the following constrained optimization problem,

max S

s.t. ξ = G (N )
(3.1)

where, ξ = G (N ) is the set of selected moments and the map G −1 : ξ −→N
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3.2. Equilibrium and quasi-equilibrium

is a closure assumption [59]. The system of equations (3.1) is the same as

system (2.22). As we know, the global equilibrium is the state where all

processes are relaxed. We consider the case where only fast processes of

the system are relaxed. This Quasi Equilibrium State (QES) can be found

similarly by maximizing the entropy but under additional constraints on

the original dynamics (see Eq. (2.21)).

3.2.1 Spectral quasi-equilibrium manifold

The general form of the constraint matrix Bd in (2.21) reads

Bd =


v1

...

vnd

 (3.2)

where vi is a ns-dimensional vector defining the ith constraint. A different

set of constraints for the construction of the pertinent quasi-equilibrium was

proposed by Gorban and Karlin [13] based on the left eigenvectors of the

Jacobian system at equilibrium,

Jeqij =

[
∂f(Ni)

∂Nj

]
N=Neq

(3.3)

where f for the case of homogeneous reactor is introduced in (2.17).

Let us define the matrix V eq with a column partitioning given by the

right eigenvectors of J eq ordered according to decreasing values of the cor-
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3. Spectral Quasi Equilibrium Manifold

responding eigenvalues, V eq = [ṽeqslow, ṽ
eq
fast] and its inverse

V eq−1

=
(
veqslow,v

eq
fast

)T
. (3.4)

The veqslow at equilibrium can be used as the vectors which define the di-

rection of slow processes leading the relaxation towards the final state, so

that the rows of Bd in Eq. (3.2) are the first nd slow left eigenvectors at

equilibrium.

The construction of SQEM is local, hence, instead of constructing and

tabulating the manifold, the subsequent states of detailed models can be

compared with the evolution of spectral quasi-equilibrium states (SQES).

Before considering application of the above SQEM to combustion mecha-

nisms, let us consider a simple example.

3.2.1.1 Example: Reversible Michaelis-Menten mechanism

The reversible Michaelis-Menten mechanism is a simple enzyme reaction

where enzyme E binds to a substrate S to form the intermediate complex

ES which is then converted into the product P , releasing the free enzyme

E [97]

S + E
kf1−−⇀↽−−
kr1

ES
kcat−−⇀↽−−
kr2

E + P (3.5)

Here, kf1, kcat and kr1, kr2 are respectively the rate constants of the forward

and reverse reactions. The system of differential equations describing the
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3.2. Equilibrium and quasi-equilibrium

temporal evolution of species concentrations is

d[S]

dt
= −kf1[S][E] + kr1[ES] (3.6a)

d[E]

dt
= −kf1[S][E] + kr1[ES] + kcat[ES]− kr2[E][P] (3.6b)

d[ES]

dt
= kf1[S][E]− kr1[ES]− kcat[ES] + kr2[E][P] (3.6c)

d[P]

dt
= kcat[ES]− kr2[E][P] (3.6d)

where [Xi] denotes the molar concentration of species i. In the absence of

an analytical solution, two approaches, the quasi-equilibrium approximation

and the steady-state assumption, have been used in the literature to find

an expression for the rate of the catalytic step. The Michaelis-Menten

equilibrium analysis is valid if the substrate reaches equilibrium on a much

faster timescale than the product is formed [97], i.e.

kcat

kr1
� 1 (3.7)

The geometrical picture of the phase space evolution can be found in [98,99].

The system (3.6) is constrained by two constants for the total enzyme

and total substrate,

[E + ES] = ξe1 (3.8a)

[S + ES + P] = ξe2 (3.8b)
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3. Spectral Quasi Equilibrium Manifold

which can be recast in the form (2.18) with E =

0 1 1 0

1 0 1 1

. The nonlin-

ear system (3.6) is therefore effectively two-dimensional. The phase portrait

for ξe1 = 1.0 and different reactions rates are shown in Fig. 3.1 where the pos-

itive semiorbits
⋃
t≥0 f(N (t)) for different initial conditions are projected

on the two-dimensional [S]× [ES] plane. It can be seen that after short tran-
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Figure 3.1: The phase portrait in [S] × [ES] space for Michaelis-Menten
mechanism with ξe1 = 1.0, kcat = 1.0 and kr2 = 10−5 (a) k1f = k1r = 1, (b)
k1f = k1r = 10, (c) k1f = k1r = 100; Dashed line: sample trajectories, solid
line: slow manifold, circles: discrete times for selected trajectories.

sients trajectories (dashed lines) are attracted to a one-dimensional mani-

fold (thick solid line) and then relax towards the zero-dimensional manifold

(equilibrium point). For the trajectory initialized with [ES]0 = [P]0 = 0 and

[S]0 = [E]0 = 1.0, the corresponding discrete time instants are also marked

for all cases in Fig. 3.1. The decrease in kcat
kr1

ratio results in faster attraction

to the low dimensional manifolds.

Gorban and Shahzad [100] proposed G = −Σ4
i=1[Xi]{ln([Xi]/[Xi]

eq)−1}

as a Lyapunov function for this mechanism. As discussed before, for the

system of ODEs (3.6) the spectral quasi-equilibrium states, can be found by
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3.2. Equilibrium and quasi-equilibrium

solving the convex optimization problem (2.22). In this case the constraint

matrix is one dimensional, and it is taken to be equal to the slowest left

eigenvector at equilibrium, [Bd]1×4 = veqslow, hence, [B]3×4 = [E;Bd].

For the chosen trajectory ([ES]0 = [P]0 = 0 and [S]0 = [E]0 = 1.0), the

SQESs are compared with the detailed solution in Figs. 3.2, 3.3 and 3.4;

the evolution of the eigenvalues, λ and the Lyapunov exponents [101],

Λ(N , δN ) = lim
T→∞

(1/T ) log |(DNfT )δN |

computed using the algorithm of [102], are also presented along the trajec-

tory. The eigenvalues can identify the timescale gap where the trajectory

is close to the slow manifold while Lyapunov exponents are providing more

accurate information about the spectral gap in nonlinear dynamics even far

from slow manifolds [103].
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Figure 3.2: The sample semiorbit for k1f = k1r = kcat = 1.0 and kr2 = 10−5.
(a) Comparison between the profiles of concentration of species deduced
from the detailed (solid lines) and the reduced SQEM description (symbols);
(b) evolution of the Lyapunov exponents and the eigenvalues of the system;
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3. Spectral Quasi Equilibrium Manifold

For the k1f = k1r = kcat = 1.0 and kr2 = 10−5 case, the constraint

(slowest left eigenvector at equilibrium) is [Bd] = [0.8507, 0, 0.5257, 0] and

as shown in Fig. 3.2(a) there is a good agreement between detailed and

reduced systems for the time evolution of the substrate and product. Far

away from equilibrium, the SQEM strongly under- or over-predicts the con-

centrations of [E] and [ES].

As mentioned before, the idea behind the quasi-equilibrium approxima-

tion is valid in the case of clear separation between slow and fast motions.

It can be seen from Fig. 3.2(b) that the gap between the eigenvalues at

equilibrium, λf/λs ' (−2.618)/(−0.382) = 6.85 is less than one order of

magnitude.

In phase space (Fig. 3.1(a)), the selected trajectory meets the one-

dimensional manifold at around t = 2.0. However, from the temporal evolu-

tion of the Lyapunov exponents, Fig. 3.2(b), the contraction rate of volumes

in the whole phase space becoming constant after t = 5.0, implying attrac-

tion to the one-dimensional manifold for t ≥ 5.0. The relatively small gaps

between the Lyapunov exponents indicate that there is no dominant shrink-

age rate of the phase space and the one-dimensional description is not a

good assumption for t ≤ 5.

The gap between slow and fast processes increases with decreasing ratio

kcat
kr1

, leading to better approximation of the detailed kinetics by the SQEM

reduced model. For kcat
kr1

= 0.1 and kcat
kr1

= 0.01 the results are shown in

Fig. 3.3 and Fig. 3.4, respectively.

In Fig. 3.3 the spectral gap at equilibrium and slow constraint are
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Figure 3.3: The sample semiorbit for k1f = k1r = 10, kcat = 1.0 and
kr2 = 10−5. (a) Comparison between the profiles of concentration of species
deduced from the detailed (solid lines) and the reduced SQEM description
(symbols); (b) evolution of the Lyapunov exponents and the eigenvalues of
the system;
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Figure 3.4: The sample semiorbit for k1f = k1r = 100, kcat = 1.0 and
kr2 = 10−5. (a) Comparison between the profiles of concentration of species
deduced from the detailed (solid lines) and the reduced SQEM description
(symbols); (b) evolution of the Lyapunov exponents and the eigenvalues of
the system;

λf/λs ' 42.0762 and [Bd] = [0.7246, 0, 0.6892, 0]. The evolution obtained

with the reduced description for the [E] and [ES] concentrations is in better

agreement with the detailed evolution with respect to the kcat
kr1

= 1 case, and
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3. Spectral Quasi Equilibrium Manifold

the SQEM trajectory approaches the detailed one much earlier. For kcat
kr1

=

0.01 (Fig. 3.4), the agreement between the detailed and reduced model

for all species is excellent. The constraint is [Bd] = [0.7089, 0, 0.7053, 0]

and the spectral gap at equilibrium is more than two orders of magnitude,

λf/λs ' 401.96, implying the clear separation of timescales.

3.3 Results: Autoignition of homogeneous mix-

tures

In the following section the application of SQEM reduced model is demon-

strated for the detailed combustion mechanisms of hydrogen, syngas and

methane corresponding to 6-, 8- and 27-dimensional systems. Thermody-

namic properties and reaction rates were evaluated using CHEMKIN [104]

and the convex minimization problem (2.22) is solved using the CEQ code

[81].

3.3.1 H2/air mixture

The detailed kinetics scheme of hydrogen/air mixture includes ns = 9

species and nr = 21 reactions [17]. In the scope of RCCE applications

for hydrogen combustion, the total number of moles (TM), the total num-

ber of radicals referred to active valence (AV), and free oxygen (FO) are

linear constraints proposed in [67, 70] as an appropriate set of constraints

in the scope of RCCE applications for hydrogen combustion (Table 2.1).

The evolution of temperature for a stoichiometric hydrogen/air mixture
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3.3. Results: Autoignition of homogeneous mixtures

at atmospheric pressure with initial temperature T0 = 1200 K is plotted in

Fig. 3.5. The detailed (solid line) solution is compared with SQEM (lines

with symbols) and RCCE manifold (dashed, dotted and dot-dashed lines).

It can be seen that with increasing dimension (number of constraints) the

agreement between the reduced and detailed description improves, and that

for the same dimension the SQEM provides a more accurate description.
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Figure 3.5: The temperature evolution for stoichiometric H2/air auto-
ignition under atmospheric pressure with unburnt temperature T0 =1200
K. Detailed solution is compared with RCCE and SQEM reduced models
with different number of constraints.

For finding a better approximation of the ignition delay time, the ini-

tial composition of the constrained equilibrium state should approximate

the actual initial composition [70]. Fig. 3.5 shows that the initial state is
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3. Spectral Quasi Equilibrium Manifold

not located near the one-dimensional quasi-equilibrium manifold which is

constructed based on one constraint in RCCE (1 Const., TM) and SQEM

(slowest left eigenvector at equilibrium).

The temporal evolution of species mass fractions using the three-dim-

ensional reduced QEM models are plotted in Fig. 3.6. SQEM provides a

more accurate description even for the low concentration species (hydroper-

oxy radical HO2 and hydrogen peroxide H2O2).
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Figure 3.6: Time history of selected species mass fractions for stoichiometric
H2/air auto-ignition under atmospheric pressure with unburnt temperature
T0 =1200 K. Detailed solution is compared with three-dimensional RCCE
and SQEM reduced models.

3.3.2 Syngas/air mixture

The CO/H2/O2 elementary scheme of Li et al. [17] was used for the chem-

istry description with 32 non-duplicate elementary reversible reactions and
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3.3. Results: Autoignition of homogeneous mixtures

12 chemical species. For a stoichiometric mixture of syngas/air in an adia-

batic constant pressure reactor with T0 = 1200 K, the temperature evolution

captured from the detailed kinetics is compared with those found by SQEM

reduced descriptions of different dimension. It is shown that for two CO:H2

molar ratios rCO/H2 = 1/3 and 3 (Fig. 3.7 (a) and (b)) the agreement of the

SQEM with three constraints and the detailed mechanism for the ignition

delay time and the temperature time history is excellent.
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Figure 3.7: The temperature evolution for stoichiometric syngas/air auto-
ignition under atmospheric pressure with unburnt temperature T0 =1200 K.
Detailed solution is compared with SQEM reduced models with different
constraints for (a) rCO/H2 = 1/3 and (b) rCO/H2 = 3.

3.3.3 Methane/air mixture

The GRI 1.2 mechanism [105] is used to predict the oxidation rates of CH4.

The detailed mechanism includes 31 species and 175 elementary reactions

with four elemental conservations (H, O, C and N); hence, the system is

27-dimensional. The temperature evolution for the stoichiometric mixture
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with T0 = 1400 K, p = 1 atm is plotted in Fig. 3.8 shows that SQEM with

seven constraints can capture the temperature behavior perfectly mean-

ing that the 27-dimensional system in this case can be represented with

7-dimensional reduced order model.
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Figure 3.8: The temperature evolution for stoichiometric methane/air auto-
ignition under atmospheric pressure with unburnt temperature T0 =1400 K.
Detailed solution is compared with SQEM reduced models with different
constraints.

It should be pointed out that the discrepancy between the reduced

and the detailed descriptions reduces non-monotonically with the dimension

of the SQEM model. Similar observations were made in other classes of

chemical kinetics model reduction methods based on species elimination

techniques [106,107].
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Profiles of selected species found by SQEM six- and seven-dimensional

reduced manifolds are compared with the detailed model in Fig. 3.9, ex-

hibiting good agreements for the reduced model with seven constraints.
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Figure 3.9: Time history of selected species mass fractions for stoichiometric
methane/air auto-ignition under atmospheric pressure with unburnt tem-
perature T0 =1400 K. Detailed solution is compared with SQEM reduced
models with different constraints.

3.4 Conclusion

The spectral quasi-equilibrium manifolds based on the slow left eigenvectors

at equilibrium can be used to obtain accurate reduced descriptions for com-

bustion kinetics. The construction of the quasi-equilibrium states is based

on the concave optimization of an entropy function under the constraints

defined by the left eigenvectors on the number of moles of species. These

states belong to the Spectral Quasi Equilibrium Manifold (SQEM), which

shows better approximation of reduced model in comparison to RCCE-
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manifold routinely used in the combustion community. SQEM offers a gen-

eral mathematically-based procedure to define the constraints imposed on

the species and it is automated for any comprehensive/skeletal mechanisms.

The autoignition of hydrogen, syngas and methane shows very good agree-

ment between the time history of the temperature and radicals deduced

from reduced and detailed models.

Although the results of SQEM is promising by itself, it can be used

for construction of slow invariant manifolds in the class of approaches in

which an initial grid is iteratively relaxed towards SIM, such as Method of

Invariant Grid [92,93] and the algorithm proposed in Ref. [16].
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Chapter 4

Entropy production analysis for

mechanism reduction 1

4.1 Introduction

In this chapter we will present the method developed during our study

categorized under skeletal reduction techniques.

Briefly, skeletal mechanisms can be generated by eliminating reactions

and/or species [108,109]. Elimination of unimportant reactions can be per-

formed using, for example, sensitivity analysis [21], the importance index of

CSP [110], Principal Component Analysis (PCA) [22] or optimization-based

methods [12,111]. Due to their nonlinear coupling, the direct elimination of

species is more challenging. CSP [33,110,112–114], Directed Relation Graph

(DRG) [27, 115–118], DRG with Error Propagation (DRGEP) [119, 120],

DRG-Aided Sensitivity Analysis (DRGASA) [121, 122], Transport Flux-

1The content of the present chapter is published in Kooshkbaghi, M., Frouzakis, C.
E., Boulouchos, K., & Karlin, I. V. (2014). Entropy production analysis for mechanism
reduction. Combustion and Flame, 161(6), 1507-1515.
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Based DRG (TFBDRG) [123], Path Flux Analysis (PFA) [24,28] and neces-

sity analysis [30] have been employed for species elimination. Species with

similar thermal and transport properties and diffusivities can be lumped

together to further reduce the size of the skeletal mechanism [124–126]. Se-

lecting important species during the simulation (on the fly model reduction)

is also possible as proposed for example by the Dynamic Adaptive Chem-

istry (DAC) reduction method [127,128]. The aforementioned methods can

be combined with storage/retrieval approaches [129]. A more comprehen-

sive discussion is available in chapter 1 and the references therein.

For large mechanisms, approaches which select species based on the sl-

ow/fast decomposition bear heavy computational cost because of the times-

cale analysis of the Jacobian matrix of the associated large system of ODEs.

On the other hand, QSSA, PEA and sensitivity analysis require additionally

mechanism-dependent knowledge. The methods which are based on the

graph structure relation between species, sometimes need a careful a priori

choice of the group of target species [127].

In the present study, the relative contribution of elementary reactions

in the total entropy production is proposed as a criterion for the construc-

tion of accurate skeletal reaction mechanisms. The important reactions are

identified based on their relative contribution to the total entropy produc-

tion being larger than a user-specified threshold. Entropy production is the

well known scalar function for reactive systems with some natural properties

such as positivity. This criterion leads to a procedure that is easy to imple-

ment without any prior knowledge about the detailed mechanism. Skeletal
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mechanisms of different sizes can be obtained by choosing the threshold

based on the desired deviation from the result of the detailed mechanism.

A significant reduction in the number of species as well as the stiff-

ness of the system is reported here for the case of a detailed scheme for

n-heptane. The skeletal mechanisms are shown to provide very accurate

results at a fraction of the computational cost in comparison to the detailed

mechanism for various cases over a wide range of thermodynamic conditions.

Compared to the other methods such as Directed Relation Graph (DRG)

and Computational Singular Perturbation (CSP) [114, 116], the same level

of reduction can be achieved with the much simpler entropy production

analysis.

The chapter is organized as follows. In Sec. 4.2, the basic notion of the

entropy production for chemical kinetics is briefly reviewed. The features

and algorithm of the method for skeletal mechanism reduction are presented

in Sec. 4.3. In Sec. 4.4, the algorithm is applied on a database generated

using a detailed n-heptane mechanism and two skeletal mechanisms are

compared. In the remaining part of Sec. 4.4 the ignition delay calculation,

homogeneous engine model, perfectly stirred reactor and laminar premixed

flame are used for the validation of the skeletal mechanism. Conclusions are

drawn in Sec. 4.5. Instructions on the numerical procedure of the entropy

production analysis are presented in the appendix A.
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4. Entropy production analysis for mechanism reduction

4.2 Entropy production for chemical kinetics

For the sake of completeness, the notion of the entropy production is briefly

reviewed in this section following the formalism of [130]. For a detailed

discussion of the entropy and entropy production concepts for chemical

kinetics and other systems the reader is also referred to [59,71]. The changes

in the entropy for a system at local equilibrium is expressed as

dS = dexS + dinS (4.1)

where superscripts ‘in’ and ‘ex’ denote the change of the system entropy

due to interactions inside the domain and with its environment [130]. The

change of the i-th species in the k-th reaction is related to the change in

the extent of each reaction, ζk, as

dNi

ν ′′ik − ν ′ik
= dζk, i = 1, · · · , ns k = 1, · · · , nr (4.2)

where the extent of reaction is related to the reaction rate by

dζk
dt

= V (qfk − qrk) (4.3)

The fundamental equation of chemical thermodynamics in terms of the

internal energy reads

dU = TdS − pdV +
ns∑
i=1

µidNi (4.4)
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4.2. Entropy production for chemical kinetics

where µi is the chemical potential of the i-th species

µi =

(
∂U

∂Ni

)
S,V,Nl 6=i

, i = 1, · · · , ns (4.5)

The de Donder affinity [131] of reaction k is defined as

αk = −Σns
i=1(ν ′′ik − ν ′ik)µi, k = 1, · · · , nr (4.6)

In the absence of deviations from the principle of detailed balance [71], αk

may be expressed as

αk = RcT ln

(
qfk
qrk

)
(4.7)

The change in the number of moles of each species can be decomposed into

the change due to chemical reactions, dinNi, and exchange of matter with

the system exterior, dexNi [132].

dNi = dinNi + dexNi, i = 1, · · · , ns (4.8)

For open systems, the entropy exchange with the exterior is of the form

dexS =
dU + pdV

T
−
∑ns

i=1 µid
exNi

T
(4.9)

while the entropy change due to the change in mole numbers with respect

to chemical reactions reads

dinS = −
∑ns

i=1 µid
inNi

T
(4.10)
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4. Entropy production analysis for mechanism reduction

For a closed system, dexN = 0 so that dN = dinN and the entropy

production due to a chemical reaction is,

dinS

dt
= − 1

T

ns∑
i=1

µi
dNi

dt
(4.11)

where dNi
dt

can be written in terms of the extent of reactions using (4.2)

dNi

dt
=

nr∑
k=1

(ν ′′ik − ν ′ik)
dζk
dt

(4.12)

Hence, entropy production is

dinS

dt
= − 1

T

ns∑
i=1

µi

nr∑
k=1

dζk
dt

(ν ′′ik − ν ′ik) (4.13)

or by the affinity definition (4.6),

dinS

dt
=

1

T

nr∑
k=1

αk
dζk
dt

(4.14)

Using (4.3) and (4.7), the total entropy production per unit volume becomes

dinS

dt
= Rc

nr∑
k=1

(qfk − qrk) ln

(
qfk
qrk

)
≥ 0 (4.15)

The entropy production (4.15) is a positive semi-definite function which

vanishes at equilibrium. The relative contribution of each reaction to the

total entropy production at time t, rk(t) is finally defined as

rk(t) =

(
dinS

dt

)−1 [
Rc(qfk − qrk) ln

(
qfk
qrk

)]
(4.16)
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From equation (4.16) it is clear that for the reactions at equilibrium rk(t) =

0.

4.3 Skeletal reduction using entropy production

analysis

In this chapter, the relative contribution of each reaction to the total entropy

production is considered as a measure of its importance. The steps for

finding the subset of the reactions that at the time t of interest forms the

skeletal mechanism are summarized below:

1. Identify the most-contributing reactions, i.e. the reactions which con-

tribute at least ε to the total entropy production

rk(t) ≥ ε (4.17)

2. Identify the important species, i.e. the species participating in the

most-contributing reactions.

3. Generate the skeletal mechanism. The simplified mechanism at time

t is generated by eliminating the non-important species from the de-

tailed description using a slightly modified version of MECHMOD

3.42 [133].

Note that each important species participate in at least one most-con-

tributing reaction. Following step 3, the skeletal mechanism contains not

only the most contributing reactions, but all elementary reactions which
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4. Entropy production analysis for mechanism reduction

include important species on both sides as well. Further reduction of the

number of reactions (with the same amount of species) would necessities

further analysis such as reaction path or atomic flux [24] to quantify the

contribution of each reaction in the total production or consumption rate

of each species.

The local analysis of the entropy production can be applied at differ-

ent time instants during the temporal evolution of the system state. The

analysis can be extended to a database of trajectories computed for a range

of pressures, initial temperatures and compositions to construct a global

skeletal mechanism. The most-contributing reactions are considered as the

reactions which at least once have a significant contribution in the entropy

production of the whole database. The final skeletal mechanism is valid

within the range of conditions represented by the sample data. The algo-

rithm of the present simple procedure is provided in the appendix A using

CHEMKIN’s notation.

Finally, it should be pointed out that the term qfk/qrk in the logarithm

of (4.15) must be strictly positive. This condition is violated in two cases:

(a) irreversible reactions where the backward reaction rate is zero (qrk = 0);

(b) when low negative concentrations result from numerical issues (qfk < 0

and/or qrk < 0).

In case (a) the qrk , and in the case (b) qfk and/or qrk should be set to be

a small (chemically insignificant) positive number (e.g. 10−50 in our study).

The problem of partially irreversible limit in chemical thermodynamics is
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4.4. Skeletal mechanism for n-heptane

addressed in the recent study [134].

4.4 Skeletal mechanism for n-heptane

The kinetics of n-heptane is of interest not only in its own right as rep-

resentative of the kinetics of higher hydrocarbons displaying the Negative

Temperature Coefficient (NTC) regime and multistage ignition, but also as

one of the components of the Primary Reference Fuel (PRF) used for octane

rating of internal combustion engines [135]. The comprehensive mechanism

for n-heptane consisting of 561 species and 2539 reactions (LLNL mech-

anism version 2, [136]) was developed to study oxidation for pressures in

the range 1 ≤ p ≤ 42 atm, initial temperatures between 550 to 1700 K,

equivalence ratio ϕ from 0.3 to 1.5, and nitrogen-argon dilution from 70 to

99 percent [4]. The detailed mechanism which will be referred to as D561

below has been used for the development of reduced schemes by various

approaches [114,116,117,126,137].

The local entropy production analysis is performed at the four time

instants during the isobaric and isenthalpic auto-ignition of a stoichiometric

mixture at initial temperature and pressure T0 = 650 K, p = 1 atm marked

in Fig. 4.1 to identify the reactions contributing at least ε = 0.05 to the

total entropy production. The analysis reveals that initially (t = 0 s) the

important reactions are the initiation reaction of oxygen attacking the fuel
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Figure 4.1: Time history of temperature computed using the detailed
mechanism and the major elementary reactions during different stages
(T0 = 650K, p = 1 atm and ϕ = 1).

to produce HO2 and the heptyl radical isomers

nC7H16 + O2
−−⇀↽−− C7H15−3 + HO2

nC7H16 + O2
−−⇀↽−− C7H15−2 + HO2

nC7H16 + O2
−−⇀↽−− C7H15−4 + HO2

nC7H16 + O2
−−⇀↽−− C7H15−1 + HO2

During the first pre-ignition period (t = 0.02 and 0.056 s), reactions with
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4.4. Skeletal mechanism for n-heptane

OH radicals abstracting H from the fuel

nC7H16 + OH −−⇀↽−− C7H15−2 + H2O

nC7H16 + OH −−⇀↽−− C7H15−3 + H2O

thermal decomposition

C7H14OOH2−5 −−⇀↽−− C7H14O2−5 + OH

C7H14OOH3−6 −−⇀↽−− C7H14O2−5 + OH

C7H14OOH1−4 −−⇀↽−− C7H14O1−4 + OH

and ketohydroperoxides decomposition

nC7ket24 −−→ nC3H7CHO + CH3COCH2 + OH

nC7ket35 −−→ C2H5CHO + C2H5COCH2 + OH

contribute significantly to the entropy production. The most-contributing

reactions during the period before the second ignition (t = 0.1 s) are the

ones producing formaldehyde (CH2O) and carbon monoxide (CO)

CH2CHO + O2 −−→ CH2O + CO + OH

O2C2H4OH −−→ OH + 2 CH2O

The analysis of post-ignition at t = 0.16 s shows that the most-contributing
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4. Entropy production analysis for mechanism reduction

reactions are those producing the main products (CO2, CO and H2O)

HOCHO + OH −−→ H2O + CO2 + H

HOCHO + H −−→ H2 + CO2 + H

HOCHO + OH −−→ H2O + CO + OH

The distribution of entropy production among reactions for different times

are summarized in Fig. 4.2. It is worth to pointing out that the important
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Figure 4.2: Entropy production distributions among reactions using the
detailed mechanism (T0 = 650K, p = 1 atm and ϕ = 1); (a) t = 0 s, (b)
t = 0.03 s, (c) t = 0.1 s, (d) t = 0.16 s.

reactions, products and oxidation path found here on the basis of the en-

tropy production analysis are in agreement with the results of the kinetic

description of n-heptane oxidation [4] and the CSP analysis [114].
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4.4. Skeletal mechanism for n-heptane

Entropy production analysis was then performed on a solution database

for auto-ignition in the range of pressures 1, 5, 10, 20 atm, initial temper-

atures in the range 650 ≤ T0 ≤ 1400 K resolved with a step of 50 K,

equivalence ratios ϕ =0.5, 0.8, 1.0, 1.2, 1.5 and different threshold values ε.

The dependence of the error in the ignition delay time and the number of

species in the skeletal mechanism on the value of ε are plotted in Fig. 4.3

for p = 1 atm, T0 = 650 K and ϕ = 1.0. The non-monotonicity of the error

curve has also been observed in other species elimination techniques based

on analysis of reactive states [28,106].
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Figure 4.3: Number of species in the skeletal mechanism and relative error
in the ignition delay time as a function of the threshold.

Two skeletal mechanisms with 161 species in 688 reactions and 203

species in 879 reactions obtained with ε = 0.006 and 0.002 and henceforth
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4. Entropy production analysis for mechanism reduction

referred to as R161 and R203, respectively, were selected for validation. It

should be noted that smaller schemes can be readily constructed, albeit at

the cost of narrower range of applicability and/or lower accuracy. Similar

species can also be lumped together as proposed in [117, 126] to further

reduce the size of the mechanism.

The size of the mechanism obtained by the entropy production analysis

is comparable with other reducing strategies. With the same quality of

reduction, skeletal mechanisms including 188 species and 842 reactions was

obtained by DRG [116], and 177 species and 768 reactions or 185 species

and 786 reactions by CSP [114].

4.4.1 Auto-ignition of homogeneous mixtures

Ignition delay times in the constant pressure and enthalpy reactor computed

using the skeletal and detailed mechanisms are compared in Fig. 4.4. Both

skeletal mechanisms reproduce the ignition delay well over a wide range of

pressures, equivalence ratios and temperatures including the NTC region.

As expected, better agreement is obtained at high pressures and tempera-

tures and the error for R161 is higher than that of R203.

Species elimination with the help of entropy production leads not only

to an ODE system of reduced dimensionality but also with lower stiffness.

The evolution of the fastest timescale, τfast, defined by the inverse of the

most negative eigenvalue of the Jacobian matrix for the D561, R203 and

R161 schemes is plotted in Fig. 4.5, together with the time history of temper-

ature. The fast timescale is monotonically decreasing towards equilibrium,
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Figure 4.4: Ignition delay times computed with the different mechanisms
(D561: solid line, R203: circles, R161: dashed line).

while there are sharp drops during the two ignition stages. The difference

between the timescales of the detailed and skeletal mechanisms are sev-

eral orders of magnitude which in combination with the reduced number of

variables results in a significant reduction in computational time even for

homogeneous autoignition computations. CPU times for the calculation of

1 s of the ignition process for three initial temperature are summarized in

Table 4.1 using the stiff integrator DVODE [84]. The CPU calculation times

reveals that the speed up for R203 and R161 compared with D561 is around

10.3 and 16, respectively. Similar order of timescales for n-heptane was also

reported in [137]. It should be noted that the unrealistically fast time scales

of the order of 10−15 s may well be an artifact of the way the detailed mech-
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Figure 4.5: Temporal evolution of the temperature and the fastest timescale
of the homogeneous autoigintion system for the skeletal (R203: circles with
solid line, R161: dashed line) and detailed mechanism (solid line).

Table 4.1: CPU times (seconds) for the integration of the isobaric and
isenthalpic reactor till 1 second (ϕ = 1, p = 1 atm).

T0 = 600 K T0 = 650 K T0 = 700 K T0 = 750 K
D561 111.865 97.322 98.672 88.494
R203 10.796 10.043 9.068 8.483
R161 6.618 6.499 5.958 5.684

anisms for such complex fuels are generated (automatic generation based

on the so-called reaction classes [4]).

The corresponding curves of the total entropy production per volume

are compared in Fig. 4.6. The peaks in the entropy production correspond

to the ignition stages; the entropy production history of the detailed solu-
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4.4. Skeletal mechanism for n-heptane

tion is well reproduced by both R203 and R161. At equilibrium the entropy

reaches its maximum and dS/dt tends to zero (Fig. 4.6) albeit at a decreas-

ing rate (Eq. 4.15). In the presence of irreversible reactions and negative
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Figure 4.6: Time history of the entropy production (D561: solid line, R203:
circles, R161: dashed line).

concentration resulting from numerical issues (as is the case here), the value

of dS/dt at long times is affected by the value chosen for the regularization

of zero (or negative) reaction rates (see section 4.3).

4.4.2 Single-zone engine model

In the absence of spatial inhomogeneities, a single-zone model can be used to

simulate a reciprocating engine with adiabatic boundary conditions [138].

The governing equations for the temporal evolution of the species mass
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Figure 4.7: Schematic picture of single-zone engine model with dimensions.

fractions, Yi, temperature and pressure read

dYi
dt

=
ω̇iWi

ρ

dT

dt
=

1

cv

(
−pd(1/ρ)

dt
−
∑

i eiω̇iWi)

ρ

)
(4.18)

p =
RcTρ

W

where, ρ, W and cv are the density, mean molecular weight and mean spe-

cific heat at constant volume of the mixture, and Rc the ideal gas constant.

Thermodynamic properties, production rates, ω̇i, and specific internal en-

ergy, ei, of the ith species are computed, using the CHEMKIN library [104].

The change of density in time is the function of the cylinder volume and

the total mass of the reacting mixture. The change of volume, V (t), can be
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4.4. Skeletal mechanism for n-heptane

related to the crank angle, θ [138]

V (t)

Vc
= 1 +

1

2
(rc − 1)f(θ) (4.19)

with

f(θ) = l/a+ 1− cos(θ(t))−
√

(l/a)2 − sin(θ(t)) (4.20)

where, Vc is the clearance volume (minimum cylinder volume), l/a is the
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ratio of the connecting rod length to the crank radius and rc is the compres-

sion ratio (see Fig. 4.7). The simulation are carried out for an engine with

Vc = 125 ml, l/a = 3 and rc = 10. The initial temperature and pressure for

the lean mixture (ϕ = 0.8) at −40 oATDC (after top dead center) are 750 K

and 5 atm, respectively. The pressure and temperature traces for 700 rpm

are compared in Fig. 4.8(a) and (b): the differences between the results are

of the same order as for the ignition delay. The profiles for selected species

in Fig. 4.8(c) and (d) show excellent agreement for the major species and

radicals even at very low concentrations. It should be noted that the skele-

tal mechanisms are constructed using data in the range 1 ≤ p ≤ 20 atm,

but in this case the pressure is increasing up to 47 atm. As mentioned in

section 4.4.1, the agreement between the skeletal and detailed models are

generally better at high pressures.

4.4.3 Premixed flame

The accuracy of the skeletal mechanisms generated using data for a homoge-

neous system were finally validated in an atmospheric 1-D laminar premixed

flame with an unburned mixture temperature Tu = 650 K using the PRE-

MIX code of CHEMKIN [87]. The laminar flame speed, SL, is reproduced

to within a maximum difference in the laminar flame speed for both R161

and R203 with respect to D561 that is less than 2 cm/s (Fig. 4.9(a)). The

computed flame temperatures Tf are in excellent agreement (Fig. 4.9(b)).

The flame structure is also accurately captured as shown in Fig. 4.10 for the

stoichiometric mixture. The computational time with the skeletal mecha-
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Figure 4.9: (a) Laminar flame speed SL and (b) flame temperature Tf (p = 1
atm, unburned mixture temperature Tu = 650 K; D561: solid line, R203:
circles, R161: dashed line).

nisms is at least one order of magnitude lower since the significant reduction

in the number of species drastically reduces the computational cost for the

evaluation of the right hand side and the Jacobian.

It should be stressed that Eq. (4.15) describes only the contribution of

the reaction to the total entropy production. However, the premixed flame

application demonstrates the validity of the skeletal mechanism generated

using homogeneous reactor results. In a laminar flame the total entropy

generation including not only chemical reactions but also, contribution of

viscosity, heat conduction and mass diffusion. It has been shown however

that the major process for entropy production is entropy generation due to
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Figure 4.10: Temperature and selected species profiles of the premixed lam-
inar flame (p = 1 atm, Tu = 650 K and ϕ = 1; D561: solid line, R203:
circles, R161: dashed line).

the chemical reactions [139].

4.5 Conclusions

In this work, we have proposed and validated the entropy production anal-

ysis for the skeletal reduction of detailed mechanisms. Important reactions

are identified based on their relative contribution to the total entropy pro-

duction above a user-specified threshold. Application to the detailed LLNL2

mechanism for n-heptane with 561 species resulted in skeletal mechanisms
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4.5. Conclusions

with 203 and 161 species. The same comprehensive mechanism has been

used for skeletal reduction with different approaches. For 600 ≤ T ≤ 1800

K, 1 ≤ p ≤ 40 atm and 0.5 ≤ ϕ ≤ 1.5, 188 species by DRG, and for

700 ≤ T ≤ 1100 K, 6.5 ≤ p ≤ 40 atm and 0.5 ≤ ϕ ≤ 2.0, 177 and 185

species by CSP are available in the literature with comparable accuracy

with the skeletal mechanisms found by entropy production analysis. The

skeletal mechanisms exhibit good agreement not only for the homogeneous

auto-igniting system and a single-zone engine model, but also for the spa-

tially varying laminar premixed flames where diffusion plays an important

role. In addition to the lower number of species, the skeletal mechanisms are

less stiff than the detailed mechanism and computational implementations

show significant speedup.

The proposed approach can be easily applied on large detailed mecha-

nisms of realistic fuels to produce skeletal schemes with promising ratio of

reduction (e.g. 71% reduction for R161). The physical basis of the entropy

production analysis and the simplicity of the algorithm (see the appendix

A) warrants the investigation of its potential for the efficient adaptive (on-

the-fly) chemistry reduction.
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Chapter 5

n-heptane/air complex dynamics

1

5.1 Introduction

The Perfectly Stirred Reactor (PSR) or Continuous Stirred Tank Reactor

(CSTR) is commonly used to study complex chemical kinetics and combus-

tion dynamics. In practice, such reactors can be realized by intense mixing

using gas reactant jets in a jet-stirred arrangement [140]. Efficient mixing

provides homogeneous conditions so that the reactor state at the exit is the

same as inside and strongly simplifies its numerical modeling.

Since the rigorous analysis of Bilous and Amundson in 1955 [141] and

the more comprehensive numerical study of Aris and Amundson [142], the re-

actor dynamics and stability for the single-step irreversible exothermic reac-

tion R→ P have been investigated extensively, revealing interesting dynam-

1The content of the present chapter is published in Kooshkbaghi, M., Frouzakis,
C. E., Boulouchos, K., & Karlin, I. V. (2015). n-heptane/air combustion in perfectly
stirred reactors: dynamics, bifurcations and dominant reactions at critical conditions
Combustion and Flame, 162(9), 3166-3179.
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5. n-heptane/air complex dynamics

ics, including multiple equilibria and hysteresis loops, super- and subcritical

Hopf bifurcations, and complex oscillations (see, for example, [143–145]).

The dependence of the reactor state (indicated for example by the

reactor temperature T ) on τ , the residence time in the reactor, typically

displays an S-shaped curve, connecting the weakly- and strongly-burning

steady state branches via an unstable steady state branch between the ig-

nition and extinction points, which define the sudden transitions from one

stable state to another [146]. The lower branch of the bifurcation diagram

that shows the possible long-term states drawn schematically in Fig. 5.1

starts from the chemically frozen state at very short residence time and

remains weakly-reacting up to the residence time of ignition τign, where

the system state jumps to the strongly-burning branch. Starting from a

state on the latter branch, the gradual decrease of τ will eventually lead

the reactor back to the weakly-reacting state at τext, the residence time of

extinction. Steady state multiplicity exists for τext ≤ τ ≤ τign, and the

reactor operation becomes sensitive to external perturbations.

More complete pictures of the qualitative features of PSRs and phase

portraits for various scenarios of bifurcation diagram have been obtained

analytically and numerically for single-step reactions and lumped variables

[147–149]. PSRs have also been investigated via Lyapunov’s direct method

[150], parametric sensitivity [151] as well as from the control and stabiliza-

tion point of view (e.g. [152]). A discussion of earlier theoretical and exper-

imental studies of ignition and cool flames in CSTRs can be found in the

review of Griffiths and Scott [153], the book [145] and the references therein.
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5.1. Introduction

Figure 5.1: Typical S-shaped bifurcation diagram of a PSR temperature
with respect to the residence time.

The ignition and extinction conditions are used for the validation and rate

constant tuning of detailed and reduced mechanisms by comparison with

experimental data (see, for example, [8]).

Although the dynamic behavior of PSRs using generic single- or few-

steps reactions has been systematically analyzed in the literature, few stud-

ies have considered detailed reaction mechanisms. Numerical investigations

of hydrogen combustion in isothermal PSRs [154–156] revealed complex dy-

namics which in addition to ignitions and extinctions included oscillations

and birhythmicity (coexistence of two stable limit cycles for the same op-

erating conditions). Sensitivity and principal component analysis at the

bifurcation points were used to construct minimal reaction mechanisms

that can predict state multiplicity [155]. Recent investigations of igni-

tion/extinction behavior of more complex fuels like dimethyl ether [157,158]

and n-heptane [159] in PSRs focused on the detection of important features

with respect to the variation of a single parameter (the residence time) and
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5. n-heptane/air complex dynamics

its effect on the type of extinction (sudden jump to the weakly-burning

or extinguished state or dynamic extinction via oscillations of increasing

amplitude) [158].

The complexity of the reaction mechanism in terms of the number

of species and reactions increases dramatically with the size of the fuel

molecule [160], and even for ideal homogeneous reactors like the PSR the

computational cost becomes high, particularly when a large number of pa-

rameters determines the behavior. Thanks to the availability of efficient

numerical continuation packages, the dynamic system analysis of single- or

few-steps global reactions can be expanded to detailed mechanisms includ-

ing hundreds of species and thousands of elementary reactions. The efficient

scanning of the dynamics with respect to multiple operating parameters can

identify the critical conditions leading to the transition between different

reactor states and provide essential information not only to enhance our

understanding of the phenomenology of combustion chemistry, but also for

the design of experiments for probing different types of kinetics and for

mechanism validation purposes.

In this chapter, we employ a skeletal mechanism of n-heptane con-

structed using the relative contribution of elementary reactions to the total

entropy production [107] presented in chapter 4.

The bifurcation diagram summarizing the possible dynamics as well as

the transitions leading from one state to another can be generated by find-

ing the long-time state for the system of equations describing the dynamics

for different values of the controlling parameter(s). In a brute force manner,
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5.1. Introduction

this can be achieved by numerical integration of the transient equations

modeling the temporal evolution of the concentration and temperature in

the reactor (see Sec. 5.2) to scan the parameter space for different initial

conditions. However, this approach can only identify stable steady or oscil-

latory states.

The dynamics in a PSR is determined by five parameters: the residence

time τ , inlet temperature T0, pressure p, equivalence ratio ϕ and heat loss

per unit volume Q̇loss, and the brute force method becomes impractical.

Arc-length continuation methods [161] offer an accurate and more efficient

way to track changes in the long-term behavior by starting from a particular

solution and following it as one or more parameters are varied. The local sta-

bility can be determined by the eigenvalues of the Jacobian matrix obtained

from the linearization of the governing equations around the desired state:

eigenvalues with negative (positive) real parts define stable (unstable) states.

In this work the AUTO-07p package [162,163] is employed to systematically

follow the transitions in the observed behavior, first with respect to indepen-

dent variations of τ and Q̇loss for fixed values of the remaining parameters

(one-parameter continuations), and then for the simultaneous variation of

τ and T0 (two-parameter continuation). The effect of equivalence ratio and

pressure is assessed by computing the two-parameter diagrams for different

values of ϕ and p to partially construct three-parameter diagrams. The ob-

served dynamics include steady and oscillatory strongly-burning states and

cool flames, multistability over extended ranges of operating conditions and

higher co-dimension bifurcations.
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5. n-heptane/air complex dynamics

As it was stated in chapter 4, entropy production analysis can also pro-

vide useful information about elementary reactions responsible for bringing

the system state to equilibrium. In this chapter it is complemented by in-

dices proposed in the context of the Computational Singular Perturbation

(CSP) method to analyze the kinetics at the bifurcation points. The CSP

analysis is performed on the mode with time scale corresponding to the

positive or the least negative eigenvalue of the Jacobian matrix at the state

of interest. The corresponding eigenvector, a first-order approximation to

the CSP mode, is used to identify the most important reactions at extinc-

tion, ignition or oscillatory combustion with the help of the amplitude [39]

and time scale participation [34] indices. More detailed CSP-based analy-

ses of autoignition and the multi-stage ignition of n-heptane can be found

in [164–166].

The work presented in this chapter is along the lines of the work of Lu

and co-workers who studied combustion dynamics in PSRs for n-heptane

[159], methane [157] and DME [157, 158]. One-parameter continuations

with respect to the residence time were performed in these works focusing

on ignition and extinction, and Chemical Explosive Mode Analysis (CEMA),

a variant of the CSP method [167], was employed to analyze the kinetics.

The chapter is organized as follows: Following the presentation of the

PSR governing equations in Sec. 5.2 and a brief discussion of numerical

continuation in Sec. 5.3, the skeletal mechanism that was generated using

entropy production analysis is presented in Sec. 5.4. The CSP analysis

tools used are briefly reviewed in Sec. 5.5 before turning to the results of
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5.2. Governing equations

numerical calculations both from the chemical kinetics and the dynamical

system points of view in Sec. 5.6.

5.2 Governing equations

The production/consumption rate of the i-th species ω̇i is the summation

of the rates of all reactions involving the species i

ω̇i =
nr∑
k=1

νikqk (5.1)

where νik = ν ′′ik − ν ′ik is the net stoichiometric coefficient.

The temporal evolution of Yi, the mass fraction of species i, and tem-

perature T in a perfectly stirred reactor is described by a system of ordinary

differential equations (ODEs)

dYi
dt

=
1

τ
(Y 0

i − Yi) +
ω̇iWi

ρ
i = 1, · · · , ns (5.2)

dT

dt
=

1

cpτ

ns∑
i=1

(h0
i − hi)Y 0

i −
1

ρcp

ns∑
i=1

hiWiω̇i −
Q̇loss

ρcp

where Y 0
i and h0

i are the mass fraction and total enthalpy of species i at the

inflow, Wi and hi the molecular weight and total enthalpy of species i, c̄p and

ρ the mixture heat capacity under constant pressure and density, and Q̇loss

the heat loss per unit volume. With the equivalence ratio ϕ defining the

inlet composition Y 0
i , the system state is described by the ns+1 dimensional

vector z = [Yi, T ], i = 1, · · · , ns for specified values of the components of

the five-dimensional parameter vector Γ = [τ, ϕ, T0, p, Q̇loss].
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5. n-heptane/air complex dynamics

Starting from an initial condition z = z(t = 0), the initial value prob-

lem (5.2) can be integrated for specified values of the parameters using

the stiff ordinary differential equation solver DVODE [84] to compute the

temporal evolution of the reactor state. The chemical source term and the

thermodynamic properties are computed using CHEMKIN [104]. At long

times the system evolves towards either a steady (equilibrium) or an oscil-

latory state (limit cycle or periodic orbit). In general, bounded solutions

of systems of autonomous ODEs can also converge at long times to more

complex attractors, like tori (quasi-periodic orbits) or strange attractors

(chaotic orbits) (for example, see [168,169]).

5.3 Numerical bifurcation analysis

Time integration can be used to explore the dynamics in a brute-force way

for different combinations of parameters and initial conditions. In the gen-

eral case, slight changes of the parameters result in small changes of the

long-term dynamics, and the dynamical system displays structural stability.

However, at critical parameter values small variations can lead to bifurca-

tions where the change in the long-term dynamics can be dramatic. The

corresponding values or the zero-, one- or multi-dimensional loci of the crit-

ical parameters define the bifurcations points, curves, or surfaces which sep-

arate the parameter space into regions characterized by similar long-term

dynamics.
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5.3. Numerical bifurcation analysis

The system (5.2) can be written in the generic vector form

dz

dt
= f(z; Γ) (5.3)

Here, z ∈ Rns+1 is the system state, Γ ∈ Rnγ the vector of operating parame-

ters, and the source term f : Rns+nγ+1 → Rns+1 is a smooth vector function

satisfying the Lipschitz conditions. The brute-force approach is neither effi-

cient in probing the dynamics nor accurate in determining the bifurcation

points, particularly for high-dimensional phase and parameter spaces. The

aim of numerical bifurcation analysis is to compute accurately and efficiently

the long-term solutions of the corresponding set of the parameter-dependent

nonlinear algebraic equations

f(z; Γ) = 0 (5.4)

defining the steady state of the system as some of the nγ parameters of Γ

are varied to compute the solution branches z(Γ).

For the sake of completeness, the basic notions and dynamic features

observed in this study are summarized. For a more comprehensive discus-

sion the reader is referred to [169]. For fixed parameter values, the phase

portrait is the collection of solution trajectories of Eq. (5.3) in phase space,

the (ns + 1)-dimensional space in which all possible system states can be

represented. At given parameter values Γ∗ a fixed point is the steady state

z∗ satisfying f(z∗; Γ∗) = 0. At long times, the system state may also evolve

on a limit cycle, a closed trajectory in phase space that describes oscillatory
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5. n-heptane/air complex dynamics

behavior. Together with fixed points they are the most commonly observed

types of limit sets. If the qualitative structure of the phase portrait changes

at Γ = Γ∗ then a bifurcation occurs, and (z∗; Γ∗) defines the bifurcation

point. The bifurcation diagram is the plot of some function of the state

variable z at the limit set as a function of one or more components of the

controlling parameters Γ.

The local stability of a state can be characterized by eigenvalues and

eigenvectors of the Jacobian matrix of the source term of (5.3), J = ∂f
∂z

[161,169]. As the solution branch Γ is followed during variation of a single

parameter, the eigenvalues follow trajectories when the real part is plotted

vs the imaginary part on the complex plane, and bifurcations occur when

the eigenvalue acquires a zero real part. In the generic case, when a real

eigenvalue crosses zero at (zTP ; ΓTP ), two fixed points collide and disap-

pear and the (zTP ; ΓTP ) is a turning point bifurcation. When a complex

pair of eigenvalues crosses the imaginary axis at (zHB; ΓHB), a stable state

loses stability and in the generic case a limit cycle is born. It can be shown

that these co-dimension one bifurcation points (i.e. obtained by varying a

single parameter) follow curves when a second parameter is varied simulta-

neously which can meet or cross at co-dimension two points. These higher

co-dimension bifurcations play the role of organizing centers of lower-order

bifurcations [169]. At a cusp bifurcation two turning point curves meet tan-

gentially and the parameter space is divided into regions having different

number of steady states. At a Bogdanov-Takens bifurcation, the lineariza-

tion at the fixed point has a pair of real zero eigenvalue and satisfies some
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5.4. Validation of skeletal mechanism for complex dynamics

technical non-degeneracy conditions [169]. At a double Hopf or Hopf-Hopf

point the Jacobian has two pairs of purely imaginary eigenvalues.

The package AUTO-07p [162, 163] is used for the continuation and

bifurcation analysis of the system of equations (5.2). In the combustion

community, AUTO has been used to study the dynamics of the Belousov-

Zhabotinsky reaction [170] and for hydrogen/air mixtures in PSRs [154,156].

In order to perform a comprehensive study of n-heptane in a PSR, AUTO-

07p was coupled with the CHEMKIN library [104] so that complex reaction

mechanisms can be readily accommodated.

Dynamical system analysis for high hydrocarbons is less common and

the recent studies have mostly focused on the effect of varying the residence

time on the reactor temperature [157–159]; the details of the employed

continuation approach were not provided.

5.4 Validation of skeletal mechanism for n-h-

eptane/air mixture for complex dynamics

A skeletal mechanism R161 which was validated for a wide range of ther-

modynamic conditions for auto-ignition in a constant pressure laminar pre-

mixed flames in chapter 4 ( [107]) is considered.

Careful inspection of the results of time integration in a transient PSR

revealed that 13 intermediate species that participate in important reactions

appear only as reactants in irreversible reactions in the detailed mechanism.

Since they cannot be produced, their concentration remains identically zero
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5. n-heptane/air complex dynamics

and they can be safely removed to produce a skeletal n-heptane mechanism

with 149 species in 669 reactions, referred to R149.

Continuation with respect to the residence time for a stoichiometric

mixture of n-heptane and air with T0 = 650 K and p = 1, 5 and 20 atm is

shown in Fig. 5.2. Although not marked in the figure, the skeletal mecha-

nism is able to capture accurately not only the turning but also the Hopf

bifurcation points (table 5.1), which will be discussed in Sec. 5.6. It can

Table 5.1: Comparison of the bifurcation points computed with the detailed
(D561) and the skeletal (R149) mechanisms; TPi and HB1 are as marked
in Fig. 5.3 (adiabatic PSR at T0 = 650 K, ϕ = 1).

p TP1 TP2 TP3 HB1

[atm] (τ [s], T [K]) (τ [s], T [K]) (τ [s], T [K]) (τ [s], T [K])
D561 1 (2.32× 10−5, 1735.4) (1.02,790.2) (1.22× 10−3, 706.5) (1.04× 10−2, 741.9)

5 (6.35× 10−6, 1846.1) (6.38× 10−2, 840.3) (4.75× 10−4, 749.6) (3.13× 10−3, 789.0)
20 (2.78× 10−6, 1981.4) (7.24× 10−3, 889.0) (2.37× 10−4, 789.9) (9.21× 10−4, 833.8)

D149 1 (2.33× 10−5, 1739.2) (1.08, 807.3) (8.41× 10−4, 717.3) (6.98× 10−3, 756.5)
5 (6.39× 10−6, 1849.5) (7.34× 10−2, 859.5) (3.76× 10−4, 760.1) (2.29× 10−3, 803.2)
20 (2.81× 10−6, 1983.8) (8.93× 10−3, 908.4) (2.24× 10−4, 800.3) (7.09× 10−4, 844.7)

therefore be concluded that the skeletal mechanism provides an accurate de-

scription of the kinetics and retains high fidelity to the complex non-linear

dynamics of n-heptane oxidation in comparison to the detailed mechanism.

5.5 CSP analysis

The processes contributing to the dominant time scale at the bifurcation

points are investigated in Sec. 5.6 via algorithmic tools provided by the

Computational Singular Perturbation.
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Figure 5.2: Comparison of the dependence of reactor temperature on the
residence time for an adiabatic PSR at T0 = 650 K, ϕ = 1.0 and various
pressures using the detailed (solid lines) and skeletal (open circles) reaction
mechanisms.

The system of equations (5.2) for an adiabatic PSR can be rewritten

as

dz

dt
= g(z) = P (z) +L(z) (5.5)

by decomposing the right hand side in terms of the chemical source term

P (z)

P =

[
W1ω̇1

ρ
, · · ·Wnsω̇ns

ρ
,−
∑ns

i=1Wiω̇ihi
ρc̄p

]T

(5.6)

and the flow term L(z)

L =

[
Y 0

1 − Y1

τ
, · · · , Y

0
ns − Yns
τ

,

∑ns
i=1 Y

0
i (h0

i − hi)
c̄pτ

]T

(5.7)

117



5. n-heptane/air complex dynamics

The source term in equation (5.5) can be written as a matrix-vector product

g(z) = SR (5.8)

where S is the (ns + 1)× (2nr + 1)-dimensional generalized stoichiometric

matrix

S =



W1ν11
ρ

· · · W1ν1nr
ρ

−W1ν11
ρ

· · · −W1ν1nr
ρ

Y 0
1 −Y1
τ

W2ν21
ρ

· · · W2ν2nr
ρ

−W2ν21
ρ

· · · −W2ν2nr
ρ

Y 0
2 −Y2
τ

...
...

...
...

...
...

...

Wnsνns1
ρ

· · · Wnsνnsnr
ρ

−Wnsνns1
ρ

· · · −Wnsνnsnr
ρ

Y 0
ns
−Yns
τ

−Σnsi=1hiWiνi1
ρc̄p

· · · −Σnsi=1hiWiνinr
ρc̄p

Σnsi=1hiWiνi1
ρc̄p

· · · Σnsi=1hiWiνinr
ρc̄p

∑ns
i=1(h0i−hi)Y 0

i

cpτ


(5.9)

and R = [qf1 , · · · , qfnr , qr1, · · · , qrnr , 1]T is the (2nr + 1)-dimensional vector of

the generalized rates of progress.

Consider a spectrum of time scales, τi, where the first F scales are

much faster than the rest and there is a large gap between the F and F + 1

time scales

τ1 < · · · < τF � τF+1 < · · · < τns+1 (5.10)

CSP [39] offers an algorithm to decompose the dynamics into iteratively

refined modes, which span the fast and slow subspaces. Recasting Eq (5.8)

in terms of the CSP modes, one can write

g = gfast + gslow =
F∑
i=1

afasti mi
fast +

ns+1∑
i=F+1

aslowi mi
slow (5.11)

where ai is the (ns + 1)-dimensional CSP column basis vector for the i-
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5.5. CSP analysis

th mode with amplitude mi = bi · g. The complementary vector space

element bi is the CSP row basis vector satisfying orthogonality condition

(written in Kronecker form) bi ·aj = δij. Typically the F fastest time scales

are dissipative, the corresponding CSP modes quickly become exhausted

and the system state evolves on the slow subspace, which can then be

approximated by

mi
fast ≈ 0 i = 1, · · · , F (5.12)

The relaxation on the slow subspace is then governed by

dz

dt
≈ gslow (5.13)

Local information for the system time scales can be obtained from Jg, the

Jacobian of g. For real eigenvalues (complex pairs are treated as described

in [112]), the CSP i-th mode can be distinguished with a time scale approx-

imated by τ ≈ |λi|−1, the i-th eigenvalue of Jg [171]. To leading order CSP

vectors can be approximated by the right and left eigenvectors, i.e. ai = vi

and bi = ṽT
i [171], as they defined in chapter 2.

The decomposition approach presented above, leads to the introduc-

tion of different diagnostic tools to quantify the contribution of species and

reactions or other processes to the CSP mode of interest. The i-th CSP

mode can be characterized based on the sign of Re(λi), the real part of

the eigenvalue of Jg. The CSP mode related to the positive or less nega-

tive eigenvalue plays the main role in limiting phenomena like ignition and

extinction [157–159,172–174].
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5. n-heptane/air complex dynamics

The contribution of process k to the amplitude of the i-th CSP mode

can be computed with the help of the amplitude participation index [39,159,

164,166]

APIik =
(ṽi

T · Sk)Rk∑2nr+1
k′=1 |(ṽiT · Sk′)Rk′|

(5.14)

where k = 1, · · ·nr and k = nr + 1, · · · , 2nr correspond to the contribution

of the forward and reverse reaction rates and k = 2nr+1 to the contribution

of flow term. The API values are normalized to [0, 1] and complex conjugate

pairs of modes can be transformed into a pair of real modes as described

in [112,164].

The Jacobian matrix Jg can be decomposed based on the contribution

of the processes,

Jg =
2nr+1∑
k=1

ck (5.15)

where the ck = ∇(SkR
k) is the (ns + 1)× (ns + 1)-dimensional gradient of

the vector SkR
k. The i-th eigenvalue of Jg can then be written as,

λi = ṽT
i · c1vi + · · ·+ ṽT

i · c2nr+1vi (5.16)

and the normalized contribution of process k to the value of the i-th eigen-

value (i-th time scale) defines the timescale participation index [34,158,171,

175],

TPIik =
ṽT
i · ckvi∑2nr+1

k′=1 |ṽT
i · ck′vi|

(5.17)

The analytic Jacobian matrix used in the CSP analysis is obtained by apply-

ing the automatic differentiation tool Tapenade [176] on the source code of
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5.6. Continuation and bifurcation analysis

the transient PSR, and the eigenvalues and the left and right eigenvectors of

the Jacobian were computed using LAPACK routines [177]. In the following,

we will only analyze the mode corresponding to the leading eigenvalue, i.e.

the one with positive or least negative real part, to identify the dominant

process and reactions for ignition, extinction and oscillatory behavior.

In addition to the time scale analysis, entropy production, plays an

important role in characterizing the reversibility of the system [178].

Chemical affinity, Gibbs free energy and entropy production are closely

related [130,131]. The reactions which contribute more in the production of

entropy are responsible for relaxing the system from the initial state towards

the maximum entropy state (equilibrium) and can be ranked accordingly

(see for example [179] for a combustion application). In this work, entropy

production analysis will be applied at bifurcation points to identify the

reactions which are responsible for combustion irreversibility.

5.6 Continuation and bifurcation analysis

In this section, the effect of the variation of the system parameters on the dy-

namics of n-heptane/air mixtures in adiabatic and non-adiabatic perfectly

stirred reactors are investigated using AUTO-07p [163].
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Figure 5.3: (a) Reactor temperature as a function of residence time for
a stoichiometric n-heptane/air mixture (p = 1 atm, T0 = 700 K) in an
adiabatic PSR. Solid (dashed) lines indicate stable (unstable) states, while
the solid curves between HB1 and HB2 of the expanded inset show the
maximum and minimum reactor temperatures during the oscillations. (b)
Trajectories of the leading eigenvalues along the cool flame branch for τ <
6× 10−3s.
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5.6. Continuation and bifurcation analysis

5.6.1 One parameter continuations

5.6.1.1 Adiabatic reactor: effect of residence time

The bifurcation diagram for the combustion of a stoichiometric mixture in

an adiabatic PSR at atmospheric pressure and inlet temperature T0 = 700

K plotted in Fig. 5.3(a) displays five branches. In addition to the commonly

observed strongly-burning state, the unburned or weakly-burning states and

the connecting unstable branch shown in Fig. 5.1, the cool flame and a short

unstable branch connecting it to the extinguished reactor state are found.

The cool flame behavior is associated with a small increase of the reactor

temperature (732 ≤ T ≤ 820 K) and is characteristic of higher hydrocar-

bons displaying multi-stage ignitions and the Negative Temperature Coeffi-

cient (NTC) regime [180]. The branches are separated by the four turning

points TPi and the analysis reveals two additional Hopf bifurcation points

HBi leading to oscillatory dynamics as discussed below. Similar results are

reported in [159] for a ϕ = 0.5 mixture at p = 10 atm. The first turning

point at τTP1 = 0.0206 ms (TTP1 = 1753.5 K) marks the extinction limit

of the strongly-burning state as can be verified by time integration of the

transient equations (5.2) starting from an initial condition at TP1 with the

initial reactor temperature reduced by 1 K: the response shows a fast drop

of the reactor temperature to that of the inflowing mixture (Fig. 5.4(a)).

The most contributing reactions to the total entropy production as well as

the important reactions identified by time scale analysis of the CSP mode

with positive eigenvalue are provided in Figs. 5.4(b), 5.4(c) and 5.4(d). At

TP1, the leading eigenvalue is zero. To avoid numerical difficulties with the
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Figure 5.4: Extinction of the strongly-burning state at TP1 (T= 1753.5
K, τ = 0.0206 ms): (a) Temperature evolution in the transient PSR after
reduction of the reactor temperature by 1 K, (b) Most contributing reactions
in the total entropy production, (c) amplitude participation indices, (d)
timescale participation indices (p = 1 atm, T0 = 700 K).

infinite time scale, the CSP analysis was performed slightly to the right of

the bifurcation point on the unstable branch. Although the leading eigen-

value changes rapidly around TP1 the ordering of the reactions and the

indices were found to be insensitive to the chosen point.

The APIs reveals that extinction is controlled by the competition be-

tween the flow (negative index as expected from the transition to the extin-

guished branch by an increase in the flow rate, i.e. decrease in the residence

time) and the elementary reactions responsible for the main chain branching

step at high temperatures, H+O2 →O+OH, and the main heat releasing
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5.6. Continuation and bifurcation analysis

reaction, CO+OH →CO2+H (positive indices indicating that an increase

in the rates of these reactions will favor the strongly-burning state). The

dominant time scale at the chosen point (τ1 = 1/λ1 = 6.97 × 10−4 s) is

determined by the main chain branching reaction (positively in the radical-

producing direction, negatively in the reverse direction) and negatively by

the colder inflow. The main heat releasing step together with the secondary

chain branching step O+H2 →H+OH have a positive contribution. Entropy

production and thus irreversibility is dominated by reactions including small

molecules.
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Figure 5.5: Ignition of the cool flame at TP2 (T= 820.3 K, τ = 0.7571 s):
(a) Temperature evolution in the transient PSR after increasing the reactor
temperature by 1 K, (b) Most contributing reactions in the total entropy
production, (c) amplitude participation indices, (d) timescale participation
indices (p = 1 atm, T0 = 700 K).

The second turning point at τTP2 = 0.7571 s (TTP2 = 820.3 K) marks
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5. n-heptane/air complex dynamics

the ignition conditions towards the strongly-burning state. Indeed, a 1

K increase of the initial reactor temperature from the conditions at TP2

results in a jump to the strongly-burning state (Fig. 5.5(a)). Entropy pro-

duction analysis reveals that reactions responsible for the breakup of heavy

molecules are most important with respect to irreversibility (Fig. 5.5(b)).

CSP analysis performed slightly to the left of TP2 on the unstable branch

(Figs. 5.5(c) and (d)) shows the clearly dominant role of the reaction H2O2 →2OH,

the main branching step at low temperature [181], both in the amplitude

and in the time scale (τ1 = 6.09 s) of the leading eigenmode. Flow has

again a negative contribution. Similar findings are reported in [164,165] for

autoignition of stoichiometric n-heptane/air mixtures in a constant volume

batch reactor at 850 K and 13.5 bar.

Along the cool flame branch, the segment connecting the two super-

critical Hopf bifurcation points HB1 and HB2 (dashed line in the inset of

Fig. 5.3(a), with the solid lines marking the oscillation amplitude) defines

the range of residence times for which the n-heptane cool flames exhibit

oscillatory behavior. The trajectories of the complex pair of eigenvalues

on the complex plain (imaginary part plotted against the real part) as τ is

decreased from τ = 6 ms along the cool flame branch of Fig. 5.3(b) show

the two crossings of the real axis at the Hopf bifurcation points HB1 and

HB2, their meeting at τ = 4.13 ms to become real, and their subsequent

trajectories along the real axis. One of them crosses to positive values at

τTP3 .

The time history of the state initialized at point S1 (τ = 0.7412 ms,
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T = 760.84 K, Fig. 5.3(a)) shows the evolution to a limit cycle with a fre-

quency of about 240 Hz (Fig. 5.6(a)). At the unstable steady state S1, the

kinetics are determined by the set of reactions shown in Figs. 5.6(b), (c)

and (d). Reactions containing heavy molecules are most-contributing in the

total entropy production. The APIs show that the dominant reactions are

the dehydrogenation of n-heptane by hydroxyl radicals to produce different

isomers of the heptyl radical C7H15 and initiate the formation of the radical

pool, while the flow term has the main negative contribution. In addi-

tion, ketohydroperoxide molecules are formed from isomerization of peroxy-

alkylhydroperoxide radicals. The real part of the dominant eigenvalue at S1

is positive. The TPI shows that the slowest timescale of the unstable state

at S1 (τ1 = 4.51× 10−3 s) is due to the reactions CH2O+OH→HCO+H2O

and HO2+OH→H2O. At this point, flow has a contribution only on API,

which is positively affected by the H abstraction reactions by the hydroxyl

radical. As shown in [182] for a simple glycolysis model, CSP analysis can

be used to identify the processes controlling the oscillatory behavior. For

the high-dimensional n-heptane combustion, such a study is significantly

more complicated and beyond the scope of this work.

The steady cool flame becomes stable for a narrow interval when τ <

τHB2 , and eventually disappears for a shorter residence time at the third

turning point TP3 (τ = 0.413 ms, T = 731.72 K, Fig. 5.3(a)). As shown in

Fig. 5.7(a), a reactor initialized at a temperature slightly lower than TTP3

evolves towards the inlet temperature; TP3 corresponds to the first stage

ignition point of n-heptane/air mixtures. The explosive mode amplitude
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Figure 5.6: Oscillatory dynamics at the sample point S1 (τ = 0.7412 ms,
T= 760.84 K): (a) Temperature evolution in the transient PSR together
with a projection of a sample trajectory on the (YOH , YO2) phase plane, (b)
most contributing reactions in the total entropy production, (c) amplitude
participation indices, (d) timescale participation indices (p = 1 atm, T0 =
700 K).

is very sensitive to the residence time, while chemistry is dominated by

isomerization (internal H-atom abstraction) and dehydrogenation reactions

via OH and O2 (Figs. 5.7(c) and (d)). For low temperature ignition of n-

heptane, the same class of reactions are found to dominate the oxidation

path in [137]. All along the cool flame branch, entropy is produced by

reactions involving large molecules.

Finally, another unstable branch connects the cool flame to the extin-

guished reactor state at the fourth turning point TP4 at τ = 0.56 ms and

T =700.0013 K (expanded inset in Fig. 5.3(a)).
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Figure 5.7: Cool flame extinction limit TP3 (T= 731.72 K, τ = 0.413 ms):
(a) Temperature evolution in the transient PSR after decreasing the reactor
temperature by 1 K, (b) most contributing reactions in the total entropy
production, (c) amplitude participation indices, (d) time scale participation
indices (p = 1 atm, T0 = 700 K).

5.6.1.2 Adiabatic reactor: effect of equivalence ratio

According to Fig. 5.3(a), the stoichiometric mixture in a PSR with τ = 1

ms can support three steady states with reactor temperatures equal to 2219

K (stable, strongly-burning), 1296 K (unstable intermediate state) and 765

K (unstable cool flame), and one stable oscillatory state around the cool

flame. The effect of the variation of ϕ on the reactor temperature is shown

in Fig. 5.8. Three branches can again be seen, but the bifurcation diagram

in this case displays an isola containing the stable strongly-burning state

and the unstable branch within the flammability range 0.325 ≤ ϕ ≤ 2.582,

which is not connected to the cool flame branch. The maximum temperature

of the strongly-burning state occurs slightly on the rich side of the fuel
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5. n-heptane/air complex dynamics

equivalence ratio ϕ, as expected from the off-stoichiometric peak of the

adiabatic flame temperature for hydrocarbon/air mixtures [146]. The isola

is clearly separated from the cool flame branch which extends over the

whole range of ϕ with temperatures T0 ≤ T ≤ 793.8 K. Since for ϕ ≥ 2.582

the cool flame is the only steady reactor state, its kinetics can be isolated

and effectively studied. The changes in the bifurcation diagram that lead
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Figure 5.8: Dependence of the reactor temperature on equivalence ratio for
the adiabatic PSR at p = 1 atm, T0 = 700 K and τ = 1 ms. Solid (dashed)
lines indicate stable (unstable) steady states.

to the formation of the isola as the residence time is varied are shown in

Fig. 5.9. The isola exist for τ ≤ 0.1 s (Fig. 5.9(c)), but disappear for

τ = 0.2 s (Fig. 5.9(b)) after the unstable and the cool flame branch merge

at some intermediate residence time. For τ = 1 s the bistability region

shrinks to 0.172 ≤ ϕ ≤ 0.775, and at long enough residence times the T −ϕ
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diagram will assume the familiar shape of the adiabatic flame temperature

vs. equivalence ratio curve [146]. At low residence times the size of the isola,

and with it the flammability range, decrease and at sufficiently low τ the

cool flame branch disappears (reactor temperature equal to T0, Fig. 5.9(f)).
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Figure 5.9: The dependence of temperature reactor on the equivalence ratio
in the adiabatic PSR with T0 = 700 K and p = 1 atm at (a) τ = 1 s, (b)
τ = 0.2 s, (c) τ = 10−1s, (d) τ = 10−2s, (e) τ = 10−3s, (f) τ = 10−4s.

5.6.1.3 Effect of heat loss

The dependence of the reactor temperature on heat loss for the stoichio-

metric mixture at atmospheric pressure and for τ = 1 s and T0 = 700 K is

depicted in Fig. 5.10. At these conditions, the adiabatic (Q̇loss = 0) reactor

can only operate at the strongly-burning state (T = 2463 K), but as the
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heat loss increases the reactor temperature decreases and hysteretic behav-

ior is observed. Two turning points mark the conditions where no strongly-

burning state (TP1, Q̇loss = 0.67 kJ/s·m3) or cool flame (TP2, Q̇loss = 0.02

kJ/s·m3) can be supported in the reactor, while the existence of the Hopf

bifurcation point HB (Q̇loss = 0.614 kJ/s·m3, T = 1201.3 K) before TP1

indicates that the strong flame extinguishes dynamically. The solid curves

emanating from HB in the inset of Fig. 5.10 and marking the oscillation

amplitude show that the limit cycle exists for Q̇lossHB ≤ Q̇loss < 0.6459

kJ/s·m3 and indicate that it is destroyed in a global bifurcation which is

difficult to locate in such a high-dimensional phase space.
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Figure 5.10: The dependence of temperature reactor on heat loss in the
PSR (ϕ = 1.0, T0 = 700 K, p = 1 atm and τ =1 s). Solid (dashed) lines
indicate stable (unstable) branches.
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The long-term behavior along the unstable branch connecting the HB

point to the TP1 point in Fig. 5.10 becomes very sensitive to the initial

condition. Fig. 5.11 shows that for Q̇loss = 0.646 kJ/(s×m3) starting from

two initial conditions taken along the dashed line connecting HB to TP1

in Fig. 5.10 and slightly perturbing the reactor temperature, either a multi-

period limit cycle (T = 1140 K, Fig. 5.11(a)) or extinction (T = 1137.8 K,

Fig. 5.11(b)) can be observed.
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Figure 5.11: Temporal evolution of the reactor temperature for non-
adiabatic PSR with Q̇loss = 0.646 kJ/(s×m3) (p = 1 atm, T0 = 700 K,
ϕ = 1, τ = 1 s). Different initial conditions results in (a) multi-period
transient solution for initial T = 1140 K, or (b) dynamic extinction for
T = 1137.8 K.

Isolas also exist in the non-adiabatic case as shown in Fig. 5.12 for

Q̇loss = 0.1 kJ
s×m3 . Hopf bifurcation points are found along the unstable (inset

inside the isola) and the cool flame branch (inset at lower left corner). The

oscillations for τHB1 ≤ τ ≤ τTP2 have amplitudes of about 10 K and the

period increases with increasing residence time (Fig. 5.12(b)-(c), periods
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of 0.12 and 0.17 s, respectively). Close to the turning point, the reactor

operation is characterized by long intervals (close to 70 s) of slow increase

of the temperature followed by oscillations with a period of approximately

0.3 s (Fig. 5.12(d)), indicating that the limit cycle disappears at a global

bifurcation involving the nearby saddle point [169].
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Figure 5.12: (a) Dependence of reactor temperature on residence time for
non-adiabatic PSR with Q̇loss = 0.1 kJ/(s×m3) (p = 1 atm, T0 = 700 K,
ϕ = 1); time history of reactor temperature for (b) τ = 6.6 s, (c) τ = 7.0,
(d) τ = 7.1605. Solid (dashed) lines indicate stable (unstable) branches.

5.6.2 Multi-parameter continuation

Continuation of the turning and Hopf bifurcation points while simultane-

ously varying two parameters results in bifurcation curves which delineate

regions on parameter planes with similar dynamics. For the 150-dimensional

system considered here, the two-parameter continuation with AUTO-07p

requires careful choice of the numerical parameters and the bifurcation dia-
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5.6. Continuation and bifurcation analysis

gram had to be constructed in a piecewise manner.

5.6.2.1 Adiabatic reactor: effect of residence time and inlet mixture

temperature

We now consider the effect of the simultaneous variation of the residence

time and the inlet temperature on the four turning and the two Hopf bifur-

cation points of Fig. 5.3(a). The results are plotted in Fig. 5.13(a) together
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Figure 5.13: (a) Two-parameter (T0–τ) continuation of the turning and
Hopf bifurcation points of the adiabatic PSR at p = 1 atm and ϕ = 1; one-
parameter bifurcation diagrams (b) for for T0 = 600 K, (c) for for T0 = 730
K, (d) for for T0 = 1200 K, (e) for for T0 = 1900 K. Colors are the same as
in Fig. 5.3(a).

with one-parameter diagrams at selected T0 (Figs. 5.13(b)-(e); Fig. 5.3

should also be consulted for the notation). The turning point branches

for the cool flame ignition (TPB2) and the strong state extinction (TPB1)

meet tangentially at the cusp point CP1 for an impractically short residence

time (τ, T0) = (1.9 × 10−6s, 1805.9K), and the parameter ranges between

them define the regime of multistability. To the left of the TPB1 bifurcation
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5. n-heptane/air complex dynamics

curve and for inlet temperature lower than the TCP1 the residence time is

so low that the reactor cannot be ignited at any inlet mixture temperature.

Similarly, the turning point branches for the cool (TPB3) and the extin-

guished reactor (TPB4) states meet tangentially at the second cusp point

CP2 (τ = 2.3×10−4 s and T0 = 746.5 K), and the parameter range between

them defines the conditions for the coexistence of the two states.

For inlet temperatures higher than TCP1 = 1805.9 K, the reactor can

only operate at the strongly-burning state, irrespective of the residence time

(Fig. 5.13(e)). In the range of parameters between the bifurcation curves

TPB1 and TPB2 and the two horizontal dashed lines passing though the

CP1 and CP2, two steady (weakly- and strongly-burning states) and one

unstable steady state will be observed (Fig. 5.13(d)).

In the range between TPB1 and TPB2 and below the lower dashed line,

the dynamics become more complex, involving up to seven possible limit

sets: three steady and stable (unreacted mixture, cool and strongly-burning

state), three unstable steady states, and oscillatory cool flames. At inlet

temperature T0 = 550 K, the lower limit for which the detailed mechanism

is valid [4], one Hopf bifurcation point always exists for a residence time

between the second (TPB2) and the third (TPB3) turning points (i.e., along

the cool flame branch), as it can be seen in Fig. 5.13(b) for T0 = 600 K. It

turns out that the second Hopf point emerges from the saddle-node TPB3

locus at τ = 0.4898 s, T0 = 687.58 K. The HBB and TPB3 curves meet

tangentially at a Bogdanov-Takens (BT) bifurcation point of co-dimension

two where the steady state has a double-zero eigenvalue [169]. As the value
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of inlet temperature is further increased, the turning point and the second

Hopf point, move apart and two Hopf points begin to move closer together

until finally HB1 and HB2 coalesce at the double Hopf bifurcation point

(τ, T0) = (7 × 10−4s, 719.1K), another bifurcation point of co-dimension

two, where two pairs of complex conjugate eigenvalues change their signs

simultaneously at a double Hopf bifurcation point. For 719.1 < T0 < TCP2

K, the whole cool flame branch is steady, as can be seen in Fig. 5.13(c).

As mentioned, high co-dimension points act as organizing centers for

the dynamics (see [169] for the details on the expected behavior around such

points). However, for high-dimensional systems like the one considered

here it is difficult to show the expected behavior, which includes global

bifurcations. Figure 5.14(a) shows only the transient behavior of a PSR

initialized at a residence time slightly lower than BT. The reactor state

starts to oscillate with increasing amplitude. Due to the low residence time

compared to BT point, the cool flame cannot sustain itself, it extinguishes

suddenly and the reactor temperature returns to the inlet value.

The entropy production and the CSP analysis of the mode with positive

eigenvalue at the conditions of the BT point are provided in Figs. 5.14(b),

(c) and (d).

Some of the dynamics mentioned above occurs in narrow ranges of inlet

temperatures and sometimes for very short residence times and would there-

fore be difficult to observe experimentally. Nevertheless, two-parameter

diagrams like Fig. 5.13 provide invaluable information for understanding

the combustion dynamics and to guide experiments in PSRs to parameter
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Figure 5.14: The analysis of Bogdanov-Takens bifurcation point, BT (T0 =
687.58 K, T = 727.89 K, τ = 0.4898 ms): (a) Temperature evolution in the
transient PSR after small perturbation in reactor temperature, (b) Most
contributing reactions in the total entropy production, (c) Amplitude par-
ticipation indices, (d) Time scale participation indices (p = 1 atm and
ϕ = 1).

regions where the kinetics at different regimes can be effectively probed.

Continuation with respect to additional parameters can help to identify

parameter ranges that are more amenable to experimental investigation.

5.6.2.2 Adiabatic reactor: effect of pressure and equivalence ratio on

the τ − T0 bifurcation diagram

The effect of pressure and equivalence ratio on the τ−T0 bifurcation diagram

can be studied by computing the curves for different values of p and ϕ.

At higher pressure the observed bifurcations do not change, but the

branches of the critical curves shift to lower residence times rendering the
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Figure 5.15: Effect of (a) pressure and (b) equivalence ratio on the τ−T0 two-
parameter continuation diagrams (adiabatic PSR working at stoichiometric
conditions).

strongly-burning state more dominant (Fig. 5.15(a)). The range of inlet

temperatures leading to cool flame oscillations widens, but the reduction

in the range of τ make their experimental investigation more difficult. The

inlet composition is found to have only a minor effect on the dynamics

for ϕ = 0.8, 1.0, and 1.2 (Fig. 5.15(b)). Figure 5.15 can be considered as a

projection of the three-parameter bifurcation diagram on the two-parameter

space τ−T0. By repeating the analysis for different pressures or equivalence

ratios, a three-parameter diagram can be constructed.

5.7 Conclusions

The complex dynamics and bifurcations of high hydrocarbons like n-heptane

in perfectly stirred reactors can be systematically investigated using a com-

bination of time integration of the transient PSR equations and single- and
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5. n-heptane/air complex dynamics

multi-parameter continuation and stability analysis with AUTO-07p [163].

The study is carried out with a skeletal mechanism with 149 species and

669 elementary reactions constructed by applying the proposed entropy

production analysis method (chapter 4 and [107]) on the detailed LLNL2

scheme [136] (561 species and 2539 reactions). Ignition delay time and flame

speed over an extended range of conditions and the bifurcation points in

the PSR computed with the skeletal mechanism are in very good agreement

with the results computed with the detailed mechanism.

The reactor stability was investigated with respect to the residence

time τ , inlet temperature T0, pressure p, inlet mixture equivalence ratio

ϕ and heat loss Q̇loss. Multiple turning and Hopf bifurcation points were

found in the continuation with respect to τ defining the bifurcation values

and showing that up to six limit sets can coexist for the same operating con-

ditions, both physically-realizable (steady and stable: extinguished reactor,

cool flames and strongly-burning state, or unsteady: cool flame oscillations)

as well as unphysical (unstable steady states along the branches connecting

either the turning points defining the conditions for ignition and extinction

or Hopf bifurcation point leading to the oscillatory dynamics). The kinetics

at the bifurcation points were analyzed with the help of the importance and

amplitude indices of Computational Singular Perturbation to identify the

important reactions for the explosive mode corresponding to the eigenvalue

with positive or least negative real part and entropy production analysis

which points to the reactions contributing most to irreversibility. Continua-

tion with respect to equivalence ratio revealed isolas, and their appearance
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was studied by varying the residence time. With respect to heat loss, a

Z-shaped curve was obtained, and the extinction of the strongly-burning

reactor was found to be dynamic (oscillatory extinction). Time integra-

tion indicated that global bifurcations also play an important role in the

dynamics.

Two-parameter continuation with respect to τ and T0 revealed the

range of conditions of the different steady and oscillatory states. Co-dimension

two bifurcation point (cusp, Bogdanov-Takens and double Hopf) were found,

but the high-dimensionality of the system complicates their detailed inves-

tigation. The effect of pressure and equivalence ratio on the two-parameter

diagram was also studied. Increasing pressure for a stoichiometric mixture

in an adiabatic PSR was found to shift the critical curves to lower residence

time, but the bifurcations between different states was unaffected. Equiva-

lence ratio variations in an atmospheric pressure adiabatic PSR have only

a minor effect.

To the best of the authors’ knowledge this is the first comprehensive

and systematic study of the combustion dynamics of a high hydrocarbon

in perfectly stirred reactors. However, the complexity resulting from both

the high dimensionality of the dynamical system and the large number of

parameters hinder the exploration of all possible behaviors. A lot remains

to be done, particularly in terms of exploring different combinations of

parameters, locating and tracking global bifurcations, and analyzing the

wealth of the generated information to probe and understand the reaction

kinetics determining the critical conditions.
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The numerically predicted ranges of different dynamics can guide ex-

perimental investigations to interesting conditions, which will provide data

for the validation or iterative refinement of detailed reaction mechanisms.
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Chapter 6

Non-Perturbative Hydrodynamic

Limits: A case study 1

6.1 Introduction

The derivation of hydrodynamic equations from the Boltzmann kinetic equa-

tion is the classical problem of statistical mechanics. The best known tech-

nique, the Chapman-Enskog (CE) method [54], is a perturbation method

based on a small parameter (Knudsen number). While the formal deriva-

tion of the Navier-Stokes equation from the Boltzmann equation by this

method is a textbook example of the success of statistical physics, many

problems related to the hydrodynamic limit of the kinetic equations re-

main unsolved [51]. The CE perturbation expansion fails as the post-

Navier-Stokes hydrodynamic equations (e.g. Burnett’s equations) are un-

stable [183]. Moreover, even at the Navier-Stokes level, the rate of dissipa-

1The content of the present chapter is published in Karlin, I. V., Chikatamarla, S.
S., & Kooshkbaghi, M. (2014). Non-perturbative hydrodynamic limits: A case study.
Physica A: Statistical Mechanics and its Applications, 403, 189-194.
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tion (by viscosity, thermal conductivity or diffusion) is unbounded which

contradicts the finiteness of relaxation times in the kinetic picture. Finally,

as pointed out by many authors (e.g. [184]), the smallness parameter of

the problem is not a fixed quantity (unlike, for example, the fine structure

constant in quantum electrodynamics) but can be always scaled out.

All this points at the inability of the CE method to tackle the above

problem, and non-perturbative approaches are sought. To that end, mini-

mal kinetic theories such as Grad’s finite-moment systems have been stud-

ied in detail [53, 56], including the exact summation of the entire CE se-

ries. Some results obtained along these lines are surprising. For exam-

ple, Slemrod [184] noted that exact summation of the CE expansion re-

sults in hydrodynamic equations of Korteweg’s type (that is, containing

the capillarity-type contribution) rather than a (modified) Navier-Stokes

equation. However, results for the kinetic equations, that is, for infinite mo-

ment systems remained almost entirely unexplored due to lack of analytical

non-perturbative techniques.

In this chapter, we introduce a novel analytic approach to extract non-

perturbatively the hydrodynamic component out of the kinetic equations.

We consider in detail a model kinetic equation, and derive an exact invari-

ance equation which is in striking resemblance with the Schwinger-Dyson

equation of non-perturbative field theories. Based on the exact solution to

the invariance equation, we build up a systematic non-perturbative exten-

sion procedure and show its relation to the conventional Chapman-Enskog

method. The present approach can be used beyond the model kinetic equa-
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6.2. Non-perturbative derivation of hydrodynamic manifold

tion considered below, and we outline some further steps towards the non-

perturbative hydrodynamic limit.

6.2 Non-perturbative derivation of hydrodynamic

manifold

We consider the one-dimensional kinetic equation for the distribution func-

tion f(x, v, t):

∂tf = −v∂xf − τ−1 (f − f eq) , (6.1)

where the local equilibrium has the form

f eq = n(x, t) (2πkBT/m)−1/2 e
− mv2

2kBT , (6.2)

with n(x, t) the locally conserved density,

n =

∫ ∞
−∞

f(v, x, t)dv. (6.3)

and ∂t, ∂x denote differentiation with respect to time and spatial direction.

The conventional CE analysis of (6.1) is to introduce a small parameter ε:

τ → ετ , and to expand, f = f (0)+εf (1)+. . . , in order to produce a closure to

the balance equation, ∂tn = −∂xj, where j =
∫∞
−∞ vfdv is the density flux.

One easily computes the first two terms of the CE closure, ω
(2)
CE = εD∂2

x (first

approximation; this is the conventional diffusion); ω
(4)
CE = εD∂2

x + ε2D2∂4
x

(second approximation), where D = τkBT/m is the diffusion coefficient.

The problem with such a perturbation approach is readily seen even in
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the present case: After an appropriate rescaling in time and space, the

mode’s relaxation rate ω̂(k), where k is the wave vector, is (a) unbounded as

k →∞ in the first approximation, and (b) unstable for k > 1 in the second

approximation (Fig. 6.1). Thus, even for the simplest kinetic equation (6.1),
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Figure 6.1: Hydrodynamic limit of Eq. (6.1). Dashed line: First CE approxi-

mation, ω̂
(2)
CE = −k2 (unbounded as k →∞); Dot-dashed line: Burnett-type

approximation, ω̂
(4)
CE = −k2+k4 (unstable for k > 1); Solid and dotted Lines:

Continuation by the sequence (6.30). Curves 1, 2, 3 and 4 correspond to the

hydrodynamic branch ω̂
(2n)
H for n = 1, 2, 20, 25, respectively. Interception

by a partner kinetic mode ω̂
(2n)
P (dots) at k = k

(2n)
c is indicated by open

circles.

application of the perturbative CE expansion inherits the essential problems

as in the case of the Boltzmann equation. Our goal here is to develop a

non-perturbative method to study the hydrodynamic limit of (6.1).
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In the sequel we set kBT/m = 1, τ = 1. Moments of the distribution

functions can be written as

Ml(x, t) =

∫ ∞
−∞

vlf(v, x, t)dv. (6.4)

Equation (6.1) is equivalent to an infinite-moment system,

∂tMl = −∂xMl+1 −Ml +M eq
l . (6.5)

Instead of the infinite set of moments (6.4), it proves convenient to con-

sider the generating function Z(λ, x, t) (Fourier transform in the velocity

variable),

Z =

∫ ∞
−∞

e−iλvf(v, x, t)dv. (6.6)

Let us denote Z± the real and imaginary parts of Z = Z+ + iZ−; Since

moments (6.4) are real-valued, for even and odd moments we have, respec-

tively,

M2n = (−1)n
(
∂2n
λ Z

+
)
λ=0

,

M2n+1 = (−1)n+1
(
∂2n+1
λ Z−

)
λ=0

.

In terms of the generating function, Eq. (6.1) is represented as a coupled

system for Z+ and Z−,

∂tZ
+ = ∂x∂λZ

− − Z+ + Zeq,

∂tZ
− = −∂x∂λZ+ − Z−,

(6.7)

147



6. Non-Perturbative Hydrodynamic Limits: A case study

where Zeq = n(x, t)ϕeq, and ϕeq = e−
λ2

2 . Finally, applying the Fourier

transform in space, equations (6.7) become

∂tẐ
+ = ik∂λẐ

− − Ẑ+ + n̂ϕeq, (6.8)

∂tẐ
− = −ik∂λẐ+ − Ẑ−, (6.9)

where Ẑ±(λ, k, t) =
∫∞
−∞ e

−ikxZ±(λ, x, t)dx depend on the wave vector k.

Equations (6.8,6.9) are the starting point for the non-perturbative anal-

ysis. In the hydrodynamic limit, all moments depend on space and time

only through their dependence on the locally-conserved field (density). To

this end, the most general and yet unknown relation for the generating

functions Ẑ± can be written as

Ẑ+ = Θ̂+(λ, k2)n̂(k, t), (6.10)

Ẑ− = ikΘ̂−(λ, k2)n̂(k, t), (6.11)

where Θ̂± are the functions in question, satisfying the consistency conditions,

Θ̂+(0, k2) = 1, Θ̂−(0, k2) = 0. Knowing Θ̂−, the balance equation becomes,

∂tn̂ = −k2Ĝn̂, where

Ĝ = (∂λΘ̂
−)λ=0, (6.12)

is the extended diffusion coefficient (EDC).

Let us now formulate the most general condition for Θ̂±. The time-

derivative of the generating function can be computed in two ways. On the
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one hand, it is computed by chain rule and using the balance equation:

∂macro
t Ẑ+ =

∂Ẑ+

∂n̂
∂tn̂ = (−k2ĜΘ̂+)n̂, (6.13)

∂macro
t Ẑ− =

∂Ẑ−

∂n̂
∂tn̂ = ik(−k2ĜΘ̂−)n̂. (6.14)

This is the macroscopic time derivative, or the derivative of the yet unknown

closed generating function due to the (also yet unknown) closed balance

equation. On the other hand, the microscopic time derivative is given by

the right hand side of (6.8,6.9):

∂micro
t Ẑ+ = (−k2∂λΘ̂

− − Θ̂+ + ϕeq)n̂, (6.15)

∂micro
t Ẑ− = ik(−∂λΘ̂+ − Θ̂−)n̂. (6.16)

The dynamic invariance condition [56] requires that the micro- and the

macroscopic derivatives of the generating function should give the same

result, independently of n̂:

∂micro
t Ẑ± = ∂macro

t Ẑ±. (6.17)

Thus, the invariance condition for the generating function is a system of

two first-order equations,

−k2ĜΘ̂+ + k2∂λΘ̂
− + Θ̂+ − ϕeq = 0, (6.18)

−k2ĜΘ̂− + ∂λΘ̂
+ + Θ̂− = 0, (6.19)
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subject to the initial conditions, Θ̂+(0, k2) = 1, Θ̂−(0, k2) = 0. It can be

readily checked that the invariance equation generates the CE solution when

functions Θ̂± are expanded into Taylor series around k2 = 0. Our goal is,

however, to solve the invariance equation avoiding any expansion of this

kind. We proceed with a few transformations: (i) Differentiate (6.18) with

respect to λ and eliminate ∂λΘ̂
+ to get the second-order equation for Θ̂−:

k2∂2
λΘ̂
− − (1− k2Ĝ)2Θ̂− − ∂λϕeq = 0; (6.20)

(ii) Differentiate equation (6.20) one more time; use transformed variable,

∂λΘ̂
− = Σ̂e−λ

2/2, and note that Ĝ = (Σ̂)λ=0. Thus, the invariance equation

for the generating function becomes,

(k2Ĝ− 1)2Σ̂ + (1−λ2)(k2Σ̂− 1)=k2(∂2
λΣ̂− 2λ∂λΣ̂). (6.21)

The invariance equation (6.21) is crucial. We note that, although not form-

identical, equation (6.21) can be regarded as an analog of the basic equation

of the non-perturbative approach in quantum field theories, the Schwinger-

Dyson equation (SDE) [185, 186]. Indeed, SDE is a relationship between

the one-particle Green’s function Ĝ and the mass operator Σ̂. Standard

derivation of SDE proceeds along the lines similar to the above, considering

the generating function of many-particle Green’s functions. In the present

context, the “mass operator” Σ̂ in (6.21) provides the coupling to all higher-

order moments, and self-consistently defines the EDC Ĝ. For the present

analysis of (6.21), it is convenient to introduce the frequency function Ω̂ =
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−k2Σ̂, so that ω̂ = −k2Ĝ = (Ω̂)λ=0:

(ω̂ + 1)2Ω̂+k2(1− λ2)(Ω̂ + 1)=k2(∂2
λΩ̂−2λ∂λΩ̂). (6.22)

Solution to the ODE (6.22) with the initial conditions, (Ω̂)λ=0 = ω̂, (∂λΩ̂)λ=0 =

0, is found in closed form,

Ω̂ = (ω̂ + 1)e
λ2

2 cosh(λβ)− 1+
√

2π

4
βe

λ2+β2

2

[
2 cosh(λβ)erf

(
β√
2

)
+ e−λβerf

(
λ− β√

2

)
− eλβerf

(
λ+ β√

2

)]
,

(6.23)

where β =
√

(ω̂ + 1)2/k2, and erf is the error function. The function

Ω̂(λ, ω̂, k2) (6.23) describes all invariant manifolds of the kinetic equation:

for every fixed k, it is a parametric set of functions (of λ) parameterized

by the frequency ω̂. The hydrodynamic manifold is generated by a specific

dependence ω̂H(k) which continues the corresponding solution at k = 0 to

k > 0. We note that the condition (Ω̂)λ=0 = ω̂ results in the identity, ω̂ = ω̂,

rather than in an equation for ω̂H. Therefore, a special procedure is needed

for deriving the function ω̂H. As we shall see below, the analyticity of Ω̂

implies that the hydrodynamic manifold indeed extends to k > 0.

It is instructive to write the solution (6.23) in terms of a series,

Ω̂ = ω̂ +
∞∑
n=1

λ2nω̂2n(ω̂, k2)

(2n)!(k2n)
, (6.24)
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where the coefficients ω̂2n have the following form:

ω̂2n = (ω̂ + 1)[ω̂(ω̂ + 1)2n−1 + (2n− 1)!!(k2n) + p̂2n]. (6.25)

Here p̂2n(ω̂, k2) is a polynomial in ω̂ and k2 of the order k2(n−1), and (2n−

1)!! = 1·3·5 . . . (2n−1). The first few coefficients have the following explicit

form:

ω̂2 = (ω̂ + 1)[ω̂(ω̂ + 1) + k2],

ω̂4 = (ω̂ + 1)[ω̂(ω̂ + 1)3 + 3k4 + k2(ω̂ + 1)(1 + 6ω̂)].

We note in passing that the coefficients ω̂2n (6.25) can be derived directly

from the invariance equation (6.22), without solving it explicitly. Accord-

ingly, the continuation procedure described below can also be used in other

cases where analytic solutions to the corresponding invariance equations are

difficult to obtain. Coefficients (6.25) imply the two limits:

ω̂2n → ω̂(ω̂ + 1)2n, k → 0, (6.26)

ω̂2n → (ω̂ + 1)(2n− 1)!!(k2n), k →∞. (6.27)

Consequently, we have, at k → 0:

Ω̂0 ∼ ω̂ cosh[λ(ω̂ + 1)/k]. (6.28)

Requirement of finiteness of the above expression at k = 0 selects two values
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6.2. Non-perturbative derivation of hydrodynamic manifold

for ω: ω̂H = 0, and ω̂K = −1. The former is the seed of the hydrodynamic

branch, while the latter is the (infinitely degenerated) eigenvalue of the

relaxation term of (6.1). On the other hand, in the opposite limit k → ∞

(6.27), the function Ω̂ remains analytic,

Ω̂∞ = lim
k→∞

Ω̂ = (1 + ω̂)eλ
2/2 − 1. (6.29)

Now, since at any k 6= 0 function (6.23) is an analytic function of λ, the

series (6.23) is convergent; hence, ω̂2n(ω̂, k2)/((2n)!k2n) → 0 as n → ∞.

This observation implies the following practical recipe for the continuation

for finite k: Let us consider a sequence of algebraic equations,

ω̂2n(ω̂, k2) = 0, n = 1, 2, . . . (6.30)

At k = 0, for every n, equation (6.30) seeds one (hydrodynamic) branch

at ω̂H = 0 and 2n degenerated kinetic branches at ω̂K = −1. The so-

lution ω̂
(2n)
H (k) with the asymptotics ω̂

(2n)
H (0) = 0 is the extension of the

hydrodynamic branch at the nth order of the said procedure. In other

words, instead of the CE expansion in terms of k2 we consider a sequence

of finite-dimensional algebraic problems of increasing order (6.30) based on

the convergence of the series (6.24). We term this a pullout procedure for

the reason clarified in Fig. 6.1: At each step n, the hydrodynamic branch

ω̂
(2n)
H is pulled out till the critical value k

(2n)
c . At k

(2n)
c , the hydrodynamic

branch is intercepted by one of the kinetic branches (partner kinetic mode

ω̂
(2n)
P with the asymptotics, ω̂

(2n)
P → −1 as k → 0). After the intercep-
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tion, the pair of real-valued solutions {ω̂(2n)
H , ω̂

(2n)
P } continue as the pair of

complex-conjugate roots of (6.30). This effect of interception is well known

from previous exact summations of the CE expansion of the diffusion-type

modes for finite-moment systems [56]. The pullout procedure thus furnishes

a non-perturbative extension of the hydrodynamics with monotonically in-

creasing accuracy for finite k. At any step of the procedure (6.30) the

result is bounded, and the interception point k
(2n)
c increases monotonically.

In table 6.1, the matching of the polynomial expansion to order k14 for the

sequence of pullouts ω̂
(2n)
H is verified against the CE expansion.

a2 a4 a6 a8 a10 a12 a14

ω̂
(2)
H −1 -1 -2 -5 -14 -42 -132

ω̂
(4)
H −1 1 −4 3 16 -122 312

ω̂
(6)
H −1 1 −4 27 −248 2110 -17352

ω̂
(8)
H −1 1 −4 27 −248 2830 −38232
ω̂CE -1 1 -4 27 -248 2830 -38232

Table 6.1: Expansion of the hydrodynamic mode ω̂H =
∑∞

n=1 a2nk
2n by the

sequence (6.30). Coefficients in boxes match the CE expansion ω̂CE.

However, the present procedure demonstrates a much better and con-

trolled convergence. It is evident from Fig. 6.1 that the hydrodynamic

branch is pulled out smoothly so that the result of the highest order of

approximation shown in Fig. 6.1 can be regarded exact up to k ≈ 0.8.

Using the data of Fig. 6.1, in Fig. 6.2 we present the deviation of the

CE expansion at various orders of approximation in terms of k2. While the

CE expansion indeed systematically improves the accuracy at very small k,

this comes at a price of increased deviation at larger k. By contrast, the
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∣∣∣.
pullout procedure is, in fact, a non-perturbative (that is, a non-polynomial

in k) method which approximates the infinite-dimensional problem (the infi-

nite moment system) with a sequence of finite-dimensional problems (6.30)

of increasing order; at each step the available piece of the hydrodynamic

manifold is bounded and well controlled.

6.3 Conclusion

We conclude this chapter with a discussion. Above, we have considered

the kinetic equation (6.1) the conventional hydrodynamic limit of which

is considered to be the diffusion equation, while its standard perturbative
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analysis inherits the main problems. We have derived the invariance equa-

tion, as the analog of the Schwinger-Dyson equation in the present context.

The exact solution to the invariance equation found above is, to the best of

our knowledge, the first of its kind for infinite-dimensional kinetic systems.

Based on the analyticity of the exact solution we have introduced a new

procedure of continuation of the hydrodynamic mode and have shown its

consistency with the standard Chapman-Enskog expansion. The change of

the perspective on the derivation of hydrodynamics, by switching from a

perturbative gradient expansion (expansion in terms of wave vector k) to a

sequence of finite-order, non-perturbative in gradients problems keeps the

extension of the hydrodynamics under control. Another connection to the

SDE was mentioned in [187, 188] in the context of lattice Boltzmann sim-

ulation of turbulent flows. Findings of this work lay out the way to study

the reduced description for other systems. In particular, related linearized

kinetic models such as the Bhatnagar-Gross-Krook kinetic equations can be

considered straightforwardly along the above lines, also in three dimensions

since the general tensorial structure of the generating function is known in

that case [56]. For the linearized Boltzmann equation, the resulting invari-

ance equation contains then the linearized Boltzmann operator, and the

pullout procedure will amount to solving linear integral equations of famil-

iar type [54]. Finally, for the non-linear case, approximate hydrodynamic

manifolds arising in the pullout procedure can be obtained along the lines

of non-linear finite-moment systems [56].
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Chapter 7

Conclusions and future work

7.1 Summary

The aim of this dissertation was to further explore existing approaches and

propose new ones for the construction of reduced models of chemical and

physical kinetics. The reduced models include low-dimensional manifolds

and skeletal mechanisms for combustion of typical fuels and the hydrody-

namic manifold of the Boltzmann equation. The application of reduced

models shows a reduction in computational cost by reduction of the size of

the system and by attenuation of the stiffness of the governing equations.

Constructing low-dimensional models can also help in understanding the

hierarchical interaction between macroscopic and microscopic dynamics of

relaxation of kinetic systems.

First, we fostered the use of the classical approach: constructing a low-

dimensional manifold for a system of ODEs enjoying disparity in timescales

(chapters 2 and 3). This approach is well studied in the dynamical systems

literature and slow invariant manifolds have been proposed as low-order
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models mimicking the original dynamics of the system. In the combus-

tion community, historically the approach has been used for chemical ki-

netics involving small number of species and reactions. During the early

90s, timescale-based methods such as Computational Singular Perturba-

tion (CSP) and Intrinsic Low Dimensional Manifold (ILDM) successfully

constructed low-dimensional manifolds for more complex chemical networks

for hydrogen/air and syngas/air combustion.

Other approaches like the Method of Invariant Grid (MIG) are based on

the refinement of an initial guess towards the Slow Invariant Manifold (SIM).

In chapter 2, MIG was employed with the refinement process being con-

trolled by successive relaxation and redistribution of the grid. The method

was applied on the hydrogen/air detailed mechanism involving 9 species

participating in 21 elementary reactions. Two- and three-dimensional slow

manifolds were constructed using a Rate-Controlled Constrained Equilib-

rium (RCCE) manifold as the initial guess and the accuracy were compared

with the detailed model in autoignition and planar premixed flame simula-

tions.

Relaxation towards the equilibrium can be explained through the con-

cept of entropy. Hence, methods such as the quasi-equilibrium manifold

have been proposed for the construction of low dimensional manifolds. The

union of states in the phase space where the entropy is constrained due to

slow varying processes. The better the choice of the constraints, the better

is the approximation of the low-dimensional description. In chapter 3, we

have imposed constraints on the mole numbers based on the slow left eigen-
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vectors at equilibrium. Spectral Quasi-Equilibrium Manifolds (SQEMs)

found from this method of different dimensions can be readily constructed

and manifolds of up to seven dimensions were constructed and validated

for methane/air combustion. The RCCE manifold is a well-known Quasi-

Equilibrium Manifold (QEM) where the choice of the minimal number of

constraints requires information about the class of fast/slow reactions in

the detailed kinetic description.

Some of the features of the aforementioned approaches can be summa-

rized as follows:

• How can we construct low-dimensional manifolds for a system of

ODEs?

The global Relaxation Redistribution Method (gRRM) in chapter 2

offers an approach to answer this question. The spectral quasi equi-

librium manifold proposed in Chapter 3 offers another approach for

manifold construction. The benefits of SQEM are (i) the construction

is localized in phase space, and (ii) high-dimensional manifolds can be

constructed. The drawbacks are (i) the entropy function of the under-

lying dynamical system should be known, (ii) the convex optimization

problem may not straightforward to solve b the available optimization

numerical packages (iii) the SQEM inherently is not invariant by con-

struction.

• How much of a phase space can be covered by the slow manifolds?

The equilibrium point is a zero-dimensional slow manifold and the
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dimension of the SIM increases as we move away from it. There is

no general recipe to answer how large the SIM of a fixed dimension

should be at a certain point in phase space. Usually, the relaxation

of chemical kinetics includes generating and exhausting fast and slow

modes, resulting in changes in the spectral gap and the dynamics

evolves in a nested hierarchy of slow manifolds. If the low-dimensional

slow manifolds are constructed near equilibrium, an approximation

should be made for the states farther away. In chapter 2 the initial

grid was constructed based on the RCCE method which is well known

in combustion. The relaxation and redistribution is then applied and

the converged solution is (i) the SIM of the system with the same

dimension as for the RCCE manifold, and (ii) a proper extension of

the slow manifold to cover the rest of the admissible space.

• What are the difficulties of constructing and using the slow manifolds

in chemical kinetics?

First, the construction by itself can be problematic. The structure of

the slow manifold can be complex, involving foldings or discontinuities.

SQEM and RCCE are thermodynamic manifolds which are known

to be “good” manifolds in the sense that they are not folded, multi-

valued, discontinuous, non-realizable or non-smooth [18]. By forcing

the gRRM manifold to pass through the fixed boundaries of the RCCE

manifold the author argues that in the absence of ill-behavior in the

dynamics itself (e.g. non-smooth systems), the converged manifold is

also good.
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Second, the computed slow manifolds are usually stored as tables for

use in simulations. Tables with a large number of parameterizing vari-

ables require efficient ways for storage and retrieval of information

and accurate interpolation. In order to avoid these complexities it

is recommended to construct up to three-dimensional manifolds. As

shown in chapter 3 for methane, the phase space is 27-dimensional

and for capturing the autoignition delay one should have at least a

six-dimensional manifold. Imposing a restriction on the dimension of

the slow manifold can lead to poor quality reduced models. It should

be mentioned that in chemical kinetics and specifically for autoigni-

tion, neglecting the fast processes can cause significant error in the

ignition delay times using the reduced description. The author would

like to comment that low-dimensional slow manifolds are restricted

to relatively small skeletal mechanisms such as hydrogen combustion

presented in chapter 2. However, the discussion about the geometrical

picture of relaxation of combustion systems near equilibrium is still

valuable.

Third, the parameterization of the manifold is also crucial. In the gen-

eral case, the parameterizing variables are linear combinations of the

original variables. In the RCCE method linear combinations of species

mole number is used as the slow varying variable, and the coefficients

are deduced from chemical knowledge of the reaction network. In the

SQEM method, we proposed a general way to find these coefficients,

by assuming that the slow left eigenvectors at equilibrium dictate the
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constraints on the mole numbers. There are more advanced methods

to find the slow intrinsic variables from data, which can be linear or

nonlinear functions of the original variables (e.g. [189,190]). However,

implementing the new system of variables in multi-dimensional reac-

tive flow solvers needs significant case-specific changes in numerical

codes, and additional assumptions (such as assumptions on diffusion

coefficients to simplify the governing equations).

Finally, if the initial state does not lie on the manifold, the state

should be projected on the manifolds. Projection by itself can lead to

changes in the temporal evolution of the system, specially in autoigni-

tion problems where a small amount of radicals can alter the behavior

dramatically. It is common in the combustion literature to perform

the integration in time starting from the state on the manifold to show

the quality of SIM and to eliminate the error of projection. In addi-

tion, in the presence of diffusion terms, the states leave the manifolds

and need to be projected back on the manifold.

Chapter 4 of this thesis proposed a novel and very simple method to

identify the redundant reactions/species in detailed reactions. The most-

contributing elementary reactions to the total entropy production are se-

lected, and species participating in those reactions are recognized as im-

portant. The method was applied on a high-dimensional system of n-

heptane/air mechanism including 561 species and 2539 elementary reactions.

Among all the skeletal mechanisms found by different threshold values, two

with 203 species (R203) and 161 species (R161) are selected. The skeletal
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mechanisms show excellent agreement with detailed kinetics in the adia-

batic constant pressure autoignition, the single-zone engine model and the

planar premixed flame in a wide range of the thermodynamic and the mix-

ture conditions. The reduction in size (71% in R161 case) and stiffness are

encouraging.

By careful inspection in R161 skeletal mechanism we found some of

the species have zero production rate due to elimination of unimportant

reactions. Therefore, we reduce the size of R161 to 149 species (R149). In

chapter 5, we examined the fidelity of the R149 mechanism in the PSR

setup where complex dynamics can be observed. The arc-length continu-

ation method was used to construct one- and two-parameter bifurcation

diagrams. The continuation in residence time shows a typical “S-curve” di-

agram with one extra branch for the cool-flame behavior of the fuel. Four

turning and one Hopf bifurcation points are found for an adiabatic PSR

operating at T0 = 650 K ϕ = 1, p = 1, 5 and 20 atm. The compar-

ison between D561 and R149 shows that the bifurcation points are well

captured and R149 can be used for detailed analysis of the complex dynam-

ics. The one-parameter continuation with respect to equivalence ratio and

heat losses shows different features in bifurcation diagrams, including isolas,

cool- and strong-flame oscillation and possible global bifurcations. Due to

the lower complexity of the skeletal mechanism, continuation in two param-

eters could also be carried out, showing cusp, Bogdanov-Takens and double

Hopf bifurcations. To the best of the author’s knowledge, continuation in

such a large-scale dynamical system has not been addressed in the combus-
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tion kinetics literature before, and some of the complex dynamics have been

shown for the first time for heavy hydrocarbons. In addition to dynamical

system analysis, the interesting points in bifurcation diagrams are investi-

gated from the kinetic point of view to identify the reactions leading to the

observed behavior. The diagnostic tools introduced by the Computational

Singular Perturbation method were used to identify the contribution of el-

ementary reactions and flow in ignition, extinction and oscillation of the

flame.

Chapter 6 is dedicated to a classical problem in physical kinetics: the

hydrodynamic limit of the Boltzmann equation. The classical approach

to study the problem is a perturbation-based method (Chapman-Enskog)

for which the expansion is unstable. Non-perturbative analytical techniques

were used for the derivation of the hydrodynamic manifolds from the kinetic

equations. The new approach is analogous to the Schwinger-Dyson equa-

tion of quantum field theories, and its derivation is demonstrated by the

construction of the exact diffusion manifold for a model kinetic equation.

7.2 Directions for future work

Suggestions for further research along the work presented in this thesis are

summarized below:

• Application of the entropy production analysis to construct the skele-

tal mechanisms for practical fuels:

The entropy production analysis which was introduced in chapter 4 is
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straightforward and easy to implement for constructing skeletal mech-

anism for complex fuels. For example, the detailed chemical kinetic

reaction mechanisms of Westbrook et. al. for n-alkanes larger than

n-heptane includes ns = 2115 species and nr = 8157 reactions [7].

The entropy production analysis was performed on the isenthalpic,

isobaric autoignition of n-decane (n-C10H22) for a specific condition

(ϕ = 1, T0 = 700 K and p = 20 atm). The skeletal mechanism involves

only ns = 281 species and nr = 995 reactions, and the comparison of

the evolution of the temperature shows excellent agreement between

the detailed and skeletal mechanisms (see Fig. 7.1). Both simulations

were carried out for t = 0.012 s of autoignition problem on a single

2.7 GHz processor, showing that the skeletal mechanism is approxi-

mately 387 times faster than the comprehensive one (84 minutes for

the detailed versus 13 seconds for the skeletal mechanism using the

same stiff integrator).

• Further reduction of the skeletal mechanisms:

Although the reduction in the number of species and stiffness is promis-

ing using the entropy production analysis, for heavy hydrocarbons the

size of the skeletal mechanism is still large and multi-dimensional sim-

ulations are practically impossible. The size of the skeletal mechanism

can be reduced further by using more complex methods for eliminat-

ing or lumping species. The CSP code which was developed (chapter

5) can be used to generate possible smaller skeletal mechanisms or to

identify the QSS species.
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Figure 7.1: Comparison between the time evolution of the temperature
deduced from comprehensive mechanism (solid line) and the skeletal mech-
anism (dashed line) for n-decane autoignition (p = 20 atm, T0 = 700 K and
ϕ = 1).

• Can the concept of SIM be used in a different way?

The geometry of relaxation in chemical kinetics problems is an inter-

esting topic, but as discussed the application of tabulated manifolds

in multi-dimensional simulations is limited. One can think how to

extract useful information about the physics of the reactive flow simu-

lation from slow and fast variables. The author want to comment that,

if the SIM of the system is known, maybe one can find the approach

to construct skeletal or few-steps global mechanism which mimics the

dynamics of the slow manifold

In addition, there are different methods in dynamical system literature
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for constructing the SIM which can be introduced for the combustion

community.

• Direct Numerical Simulations using skeletal mechanisms

The stability of hydrocarbon laminar/turbulent premixed flames is

the subject of ongoing studies. The low-Mach number solver based

on the spectral element code NEK5000 [191] was used to study hydro-

dynamic and thermodiffusive instabilities of laminar planar premixed

hydrogen flames (e.g. [192, 193]). In order to study instabilities of

methane flames under laminar and turbulent conditions, the entropy

production analysis was performed on a database generated from the

laminar planar premixed methane-air flame for T0 = 300 K, p = 1

atm and ϕ = 0.9 . The detailed methane mechanism (excluding ni-

trogen chemistry) consists of ns = 35 species and nr = 217 reactions

(D35) [5]. The skeletal mechanism (R20) includes ns = 20 species

and nr = 98 reactions, and the laminar flame speed SL and flame

thickness δf errors compared to the detailed one are less than 2% (see

table 7.1).

Table 7.1: methane/air premixed flame simulation

Mechanism SL (cm/s) δf (cm)
D35 33.472 0.046539
R20 33.114 0.047524

The temperature and selected species profiles deduced from the D35

and R20 mechanisms are compared in the Fig. 7.2, showing very good

agreement.
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Figure 7.2: Comparison between the flame structure deduced from the com-
prehensive mechanism (solid lines) and the skeletal mechanism (dashed
lines) for methane one-dimensional planar premixed flame (p = 1 atm,
T0 = 300 K and ϕ = 0.9).

Some direct numerical simulations of two-dimensional channel-like do-

main (see Fig. 7.3) have been performed aiming at comparing the re-

sults of the detailed and the skeletal mechanisms in a multi-dimensional

setup. The variables are nondimensionalized using Tref = 300 K,

xref = δf and tref = δf/SL for the reference temperature, length scale

and time. The planar front was perturbed into a sinusoidal shape

∆ = 0.1sin(πy/h). Around the flame, uniform quadrilateral elements

with δx = δy = 0.5δf and 8th-order polynomial in each direction were

used so that the flame thickness is resolved with 17 grid points.

A single-cusp flame structure forms which propagates towards the

inflow. The time history of the non-dimensional heat release rate
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Figure 7.3: Schematic of two-dimensional planar premixed flame setup and
boundary conditions
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Figure 7.4: Temporal evolution of the heat release rate (HRR) for detailed
(D35) and the skeletal mechanism (R20)

(HRR) (Fig. 7.4) and isocontours of the temperature for different

times (Fig. 7.5), computed using the detailed and skeletal mechanisms

are compared, showing very good agreement. The computational time
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using the skeletal mechanism is three times lower, enabling parametric

studies and extension to three-dimensional turbulent conditions.
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(a)

(b)

(c)

(d)

Figure 7.5: Temperature isocontours of the methane-air flame propagating
in the 2D domain at (a) t = 12, (b) t = 15, (c) t = 20, and (d) t = 30. Upper
and lower rows are deduced from the detailed and the skeletal mechanism
respectively.
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Appendix A

Code segment for the entropy

production analysis

A database ‘samples.dat’ is generated by the constant enthalpy and pres-

sure batch reactor solution, using the detailed mechanism initial conditions

covering the range of interest. Pressure, p, temperature, T and mass frac-

tion of all species Y , are stored row-wise in the file ‘sample.dat’. KK and

II are the number of species and reactions, respectively, and ICWRK and

RCWRK the integer and real CHEMKIN work arrays. The stoichiometric

matrix is stored in NUKI, forward and reverse reaction rates in the FWDK

and REVK arrays, while the relative contribution of reactions to the total

entropy production DSDT is stored in DSDTK. If its contribution is larger

than the threshold, CUTOFF, the reaction is flagged in the array REINDX.

Species participating in important reactions are flagged in array SPINDX.

A slightly modified version of MECHMOD 3.42 [133] was used to gener-

ate the skeletal mechanisms by eliminating unimportant species from the

detailed scheme.
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A. Code segment for the entropy production analysis

1 OPEN(unit=10,file=’samples.dat’,form=’formatted’)

2 100 CONTINUE

3 READ (UNIT=10, FMT=* ,END=200)P,T,(Y(K),K=1,KK)

4 CALL CKYTX(Y,ICKWRK,RCKWRK,X)

5 CALL CKKFKR (P,T,X,ICKWRK,RCKWRK,FWDK,REVK)

6 DO K = 1,II

7 DSDTK(K) = 0.0d0

8 ENDDO

9 DSDT = 0.d0

10 DO K = 1,II

11 IF (FWDK(K).LE.0.0d0) FWDK(K) = 1.0D-50

12 IF (REVK(K).LE.0.0d0) REVK(K) = 1.0D-50

13 DSDTK(K) = RU*(FWDK(K)-REVK(K))*(log((FWDK(K)/REVK(K))))

14 DSDT = DSDT + DSDTK(K)

15 ENDDO

16 DO K=1,II

17 IF ((DSDTK(K)/DSDT).gt.CUTOFF) ENT_IDX(K)=1

18 ENDDO

19 GO TO 100

20 200 CONTINUE

21 J = 0

22 DO K = 1, II

23 IF (ENT_IDX(K).eq.1) THEN

24 J = J + 1

25 REINDX(J)=K
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26 ENDIF

27 ENDDO

28 CALL CKNU(KK, ICKWRK, RCKWRK, NUKI)

29 DO I = 1,KK

30 SPINDX(I)=0

31 ENDDO

32

33 DO K = 1, SIZEINDX

34 J = REINDX(K)

35 DO I =1, KK

36 IF (NUKI(I,J).ne.0) THEN

37 SPINDX(I)=1

38 ENDIF

39 ENDDO

40 ENDDO

175





Bibliography

[1] U. E. I. Administration, “Annual Energy Outlook 2014,” DOE/EIA,
vol. 0383, pp. 1–269, 2014.

[2] F. Williams, Combustion theory: the fundamental theory of chemically
reacting flow systems, vol. 54. Perseus Books, 1985.

[3] Z. Qin, V. V. Lissianski, H. Yang, W. C. Gardiner, S. G. Davis, and
H. Wang,“Combustion chemistry of propane: A case study of detailed
reaction mechanism optimization,”Proc. Combust. Inst., vol. 28, no. 2,
pp. 1663–1669, 2000.

[4] H. J. Curran, P. Gaffuri, W. J. Pitz, and C. K. Westbrook, “A com-
prehensive modeling study of n-heptane oxidation,” Combust. Flame,
vol. 114, no. 1-2, pp. 149–177, 1998.

[5] G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer,
D. M. Golden, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner,
V. V. Lissianski, and Z. Qin, “GRI-Mech 3.0.”

[6] P. Gokulakrishnan, C. C. Fuller, M. S. Klassen, R. G. Joklik, Y. N.
Kochar, S. N. Vaden, T. C. Lieuwen, and J. M. Seitzman, “Experi-
ments and modeling of propane combustion with vitiation,” Combust.
Flame, vol. 161, no. 8, pp. 2038–2053, 2014.

[7] C. K. Westbrook, W. J. Pitz, O. Herbinet, H. J. Curran, and E. J.
Silke, “A comprehensive detailed chemical kinetic reaction mecha-
nism for combustion of n-alkane hydrocarbons from n-octane to n-
hexadecane,” Combust. Flame, vol. 156, no. 1, pp. 181–199, 2009.

177



Bibliography

[8] S. M. Sarathy, C. K. Westbrook, M. Mehl, W. J. Pitz, C. Togbe,
P. Dagaut, H. Wang, M. a. Oehlschlaeger, U. Niemann, K. Seshadri,
P. S. Veloo, C. Ji, F. N. Egolfopoulos, and T. Lu, “Comprehensive
chemical kinetic modeling of the oxidation of 2-methylalkanes from
C7 to C20,” Combust. Flame, vol. 158, no. 12, pp. 2338–2357, 2011.

[9] D. A. Goussis and U. Maas, “Model reduction for combustion chem-
istry,” in Fluid Mech. its Appl., vol. 95, pp. 193–220, Springer, 2011.

[10] C. W. Gear, “Simultaneous Numerical Solution of Differential-
Algebraic Equations,” IEEE Trans. Circuit Theory, vol. 18, no. 1,
1971.

[11] L. Brugnano, F. Mazzia, and D. Trigiante, “Fifty years of stiffness,”
Recent Adv. Comput. Appl. Math., pp. 1–21, 2011.

[12] B. Bhattacharjee, D. A. Schwer, P. I. Barton, and W. H. Green,
“Optimally-reduced kinetic models: Reaction elimination in large-
scale kinetic mechanisms,” Combust. Flame, vol. 135, no. 3, pp. 191–
208, 2003.

[13] A. N. Gorban and I. V. Karlin, “Method of invariant manifold for
chemical kinetics,” Chem. Eng. Sci., vol. 58, no. 21, pp. 4751–4768,
2003.

[14] N. Peters, “Reducing mechanisms,” in Reduc. Kinet. Mech. Asymptot.
Approx. Methane-Air Flames, pp. 48–67, Springer, 1991.
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a continuous stirred tank reactor,” Chem. Eng. Sci., vol. 44, no. 5,
pp. 1147–1160, 1989.

[153] J. F. Griffiths and S. K. Scott, “Thermokinetic interactions: Funda-
mentals of spontaneous ignition and cool flames,” Prog. Energy Com-
bust. Sci., vol. 13, no. 3, pp. 161–197, 1987.

190



Bibliography

[154] S. Kalamatianos and D. G. Vlachos, “Bifurcation Behavior of Pre-
mixed Hydrogen/Air Mixtures in a Continuous Stirred Tank Reactor,”
Combust. Sci. Technol., vol. 109, no. 1-6, pp. 347–371, 1995.

[155] S. Kalamatianos, Y. K. Park, and D. G. Vlachos, “Two-parameter con-
tinuation algorithms for sensitivity analysis, parametric dependence,
reduced mechanisms, and stability criteria of ignition and extinction,”
Combust. Flame, vol. 112, no. 1-2, pp. 45–61, 1998.

[156] R. J. Olsen and D. G. Vlachos, “A Complete Pressure Temperature
Diagram for Air Oxidation of Hydrogen in a Continuous Flow Stirred
Tank Reactor,” J. Phys. Chem. A, vol. 103, no. 40, pp. 7990–7999,
1999.

[157] R. Shan and T. Lu, “Ignition and extinction in perfectly stirred re-
actors with detailed chemistry,” Combust. Flame, vol. 159, no. 6,
pp. 2069–2076, 2012.

[158] R. Shan and T. Lu, “A bifurcation analysis for limit flame phenomena
of DME/air in perfectly stirred reactors,” Combust. Flame, vol. 161,
no. 7, pp. 1716–1723, 2014.

[159] R. Shan, C. S. Yoo, J. H. Chen, and T. Lu, “Computational diag-
nostics for n-heptane flames with chemical explosive mode analysis,”
Combust. Flame, vol. 159, no. 10, pp. 3119–3127, 2012.

[160] T. Lu and C. K. Law, “Toward accommodating realistic fuel chem-
istry in large-scale computations,”Prog. Energy Combust. Sci., vol. 35,
no. 2, pp. 192–215, 2009.

[161] H. B. Keller, Lectures on numerical methods in bifurcation problems.
Springer, 1987.

[162] E. J. Doedel, “AUTO: A program for the automatic bifurcation anal-
ysis of autonomous systems,” Congr. Numer, 1981.

[163] E. J. Doedel and B. E. Oldeman, AUTO-07P : Continuation and
Bifurcation Software for Ordinary Differential Equations. Concordia
University, Montreal, Canada, 2009.

[164] A. Kazakov, M. Chaos, Z. Zhao, and F. L. Dryer, “Computational
singular perturbation analysis of two-stage ignition of large hydrocar-
bons.,” J. Phys. Chem. A, vol. 110, no. 21, pp. 7003–9, 2006.

191



Bibliography

[165] D. J. Diamantis, D. C. Kyritsis, and D. A. Goussis, “Two Stage Ig-
nition of n-heptane: Identifying the Chemistry Setting the Explosive
Time Scales,” in Second Int. Work. Model Reduct. React. Flows, 2009.

[166] S. Gupta, H. G. Im, and M. Valorani, “Analysis of n-heptane auto-
ignition characteristics using computational singular perturbation,”
Proc. Combust. Inst., vol. 34, no. 1, pp. 1125–1133, 2013.

[167] W. Liu, C. K. Law, and T. Lu,“Multiple criticality and staged ignition
of methane in the counterflow,” Int. J. Chem. Kinet., vol. 41, pp. 764–
776, Dec. 2009.

[168] H. Meijer, F. Dercole, and B. Oldeman, “Numerical bifurcation anal-
ysis,” Encycl. Complex. Syst. Sci., pp. 6329–6352, 2009.

[169] I. Kuznetsov, Elements of applied bifurcation theory. Springer, 1998.

[170] R. J. Olsen and I. R. Epstein, “Bifurcation analysis of chemical re-
action mechanisms. I. Steady state bifurcation structure,” J. Chem.
Phys., vol. 94, no. 4, p. 3083, 1991.

[171] D. J. Diamantis, E. Mastorakos, and D. A. Goussis, “H2/air autoigni-
tion: The nature and interaction of the developing explosive modes,”
Combust. Theory Model., pp. 1–52, 2015.

[172] M. Valorani, H. N. Najm, and D. A. Goussis, “CSP analysis of a
transient flame-vortex interaction,” Combust. Flame, vol. 134, no. 1-2,
pp. 35–53, 2003.

[173] T. Lu, C. S. Yoo, J. H. Chen, and C. K. Law, “Three-dimensional
direct numerical simulation of a turbulent lifted hydrogen jet flame in
heated coflow: a chemical explosive mode analysis,” J. Fluid Mech.,
vol. 652, pp. 45–64, 2010.

[174] Z. Luo, C. S. Yoo, E. S. Richardson, J. H. Chen, C. K. Law, and
T. Lu, “Chemical explosive mode analysis for a turbulent lifted ethy-
lene jet flame in highly-heated coflow,” Combust. Flame, vol. 159,
no. 1, pp. 265–274, 2012.

[175] D. A. Goussis and H. N. Najm, “Model Reduction and Physical Un-
derstanding of Slowly Oscillating Processes: The Circadian Cycle,”
Multiscale Model. Simul., vol. 5, no. 4, pp. 1297–1332, 2006.

192



Bibliography

[176] L. Hascoet and V. Pascual, “The Tapenade Automatic Differentiation
tool: principles, model, and specification,” ACM Trans. Math. Softw.,
vol. 20, 2013.

[177] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen, LAPACK Users’ Guide. Philadelphia, PA: Society
for Industrial and Applied Mathematics, third ed., 1999.

[178] R. Tolman and P. Fine, “On the Irreversible Production of Entropy,”
Rev. Mod. Phys., vol. 20, no. 1, pp. 51–77, 1948.

[179] W. R. Dunbar and N. Lior, “Sources of combustion irreversibility,”
Combust. Sci. Technol., 1994.

[180] I. Glassman and R. A. Yetter, Combustion. 2008.

[181] C. K. Westbrook, “Chemical kinetics of hydrocarbon ignition in
practical combustion systems,” Proc. Combust. Inst., vol. 28, no. 2,
pp. 1563–1577, 2000.

[182] P. D. Kourdis and D. A. Goussis, “Glycolysis in Saccharomyces cere-
visiae: algorithmic exploration of robustness and origin of oscilla-
tions.,” Math. Biosci., vol. 243, no. 2, pp. 190–214, 2013.

[183] A. V. Bobylev, “The Chapman-Enskog and Grad methods for solving
the Boltzmann equation,” Akad. Nauk SSSR Dokl., 1982.

[184] M. Slemrod, “Chapman-Enskog– viscosity-capillarity,” Q. Appl.
Math., vol. 70, no. 3, pp. 613–624, 2012.

[185] F. J. Dyson,“The S Matrix in Quantum Electrodynamics,”Phys. Rev.,
vol. 75, no. 11, pp. 1736–1755, 1949.

[186] J. Schwinger, “On the Green’s functions of quantized fields. I,” Proc.
Natl. Acad. Sci., vol. 37, no. 7, pp. 452–455, 1951.

[187] S. Succi, H. Chen, and S. Orszag, “Relaxation approximations and
kinetic models of fluid turbulence,” Phys. A Stat. Mech. its Appl.,
vol. 362, no. 1, pp. 1–5, 2006.

[188] J. Lätt, B. Chopard, S. Succi, and F. Toschi, “Numerical analysis of
the averaged flow field in a turbulent lattice Boltzmann simulation,”
Phys. A Stat. Mech. its Appl., vol. 362, no. 1, pp. 6–10, 2006.

193



Bibliography

[189] A. Singer, R. Erban, I. G. Kevrekidis, and R. R. Coifman, “Detecting
intrinsic slow variables in stochastic dynamical systems by anisotropic
diffusion maps.,”Proc. Natl. Acad. Sci. U. S. A., vol. 106, pp. 16090–5,
Sept. 2009.

[190] C. J. Dsilva, R. Talmon, N. Rabin, R. R. Coifman, and I. G.
Kevrekidis, “Nonlinear intrinsic variables and state reconstruction in
multiscale simulations.,” J. Chem. Phys., vol. 139, p. 184109, Nov.
2013.

[191] Fischer, P. F. and Lottes, J. W. and Kerkemier, S. G., “NEK5000.”
http://nek5000.mcs.anl.gov., 2008.

[192] C. Altantzis, C. E. Frouzakis, A. G. Tomboulides, M. Matalon, and
K. Boulouchos, “Hydrodynamic and thermodiffusive instability effects
on the evolution of laminar planar lean premixed hydrogen flames,” J.
Fluid Mech., vol. 700, pp. 329–361, May 2012.

[193] C. Altantzis, C. E. Frouzakis, A. G. Tomboulides, and K. Boulou-
chos, “Numerical simulation of propagating circular and cylindrical
lean premixed hydrogen/air flames,” Proc. Combust. Inst., vol. 34,
pp. 1109–1115, Jan. 2013.

194

http://nek5000.mcs.anl.gov.


LAV
Laboratorium für Aerothermochemie und Verbrennungssysteme
Aerothermochemistry and Combustion Systems Laboratory

Address: ETH Zürich,
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Phone: +41 (44) 632 26 50
Website: www.lav.ethz.ch/people/mahdikwww.lav.ethz.ch/people/mahdik

E-mail: kooshkbaghi@lav.mavt.ethz.chkooshkbaghi@lav.mavt.ethz.ch

E-mail: mahdi.kooshkbaghi@gmail.commahdi.kooshkbaghi@gmail.com

Gender: Male
Nationality: Iranian
Marital status: Single
Birth-date: 25-01-1986
Place of Birth: Tehran

Curriculum Vitæ
Mahdi Kooshkbaghi

Education

2012 – 2015 • Ph.D in Mechanical Engineering at LAV, ETH Zürich
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