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Challenges and Motivation

I Every Mesh Grid, Every Time Step
1. Mass Conservation Equation
2. Momentum Conservation Equations
3. Energy Conservation Equation
4. ns PDEs for temporal evolution of ns species

I Size of detailed chemical kinetics

Lu, T., & Law, C. K. (2009). Prog. Energ. Combust., 35(2), 192-215.

CH4 C7H16 C10H22 C12H26 C20H42-2
Species 53 561 940 1282 7200

Reactions 325 2539 3878 5030 31400

Sizes of detailed reaction mechanisms for
sample hydrocarbons

I Stiffness/ Non-linearity
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Challenges and Motivation

I Every Mesh Grid, Every Time Step
1. Mass Conservation Equation
2. Momentum Conservation Equations
3. Energy Conservation Equation
4. ns PDEs for temporal evolution of ns species

I Stiffness/ Non-linearity

Goussis, D. A., & Maas, U. (2011). In Turbulent
Combustion Modeling (pp. 193-220). 0 0.05 0.1 0.15 0.2
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Computational Cost Reduction for Chemical Kinetics

A Time scale analysis:
Describe chemistry using fewer variables.
X QSSA: Bodenstein (1913)
X CSP: Lam & Goussis (1989)
X ILDM: Maas & Pope (1992)
X MIM: Karlin & Gorban (1991)

X RRM: Kooshkbaghi et al. (2014)

B Conventional Reduction Methodology:
Generate smaller skeletal mechanisms from the detailed
mechanism by systematically removing unimportant species
and reactions.
X CSP: Massias et al. (1999)
X DRG: Lu & Law (2005)
X PFA: Sun et al. (2010)

X Entropy Production Analysis: Kooshkbaghi et al. (2010)

C Storage and Retrieval methods
X ISAT: Pope (1997)
X PRISM: Tonse (2003)
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large fuels

* Complex dynamics of heavy hydrocarbon
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* Reactions supporting and opposing 
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Concept of Slow Invariant Manifold

Classification of Systems

I Autonomous system

I Cauchy-Lipschitz

dN
dt

= f(N)

f : Rns ⊃ S→ Rns

N ∈ S, t ∈ T
φ t

t∈T is called a flow where

Nt = φ
tN0

Neq is a unique fixed point.

I In dynamical system
{T,S,φ t}, U ⊂ S is invariant
manifold (set) if N0 ∈ U then
∀t: φ tN0 ∈ U

I Slow Invariant Manifold (SIM)
7 / 44



1 Introduction

2 gRRM
SIM Def.

MIM

Constructing Manifold

Using Manifold

3 Entropy Prod. Ana.

4 n-heptane/air
complex dynamics

5 Conclusion

LAV
Laboratorium für Aerothermochemie und Verbrennungssysteme
Aerothermochemistry and Combustion Systems Laboratory

Concept of Slow Invariant Manifold

Classification of Systems

I Autonomous system

I Cauchy-Lipschitz

dN
dt

= f(N)

f : Rns ⊃ S→ Rns

N ∈ S, t ∈ T
φ t

t∈T is called a flow where

Nt = φ
tN0

Neq is a unique fixed point.

I In dynamical system
{T,S,φ t}, U ⊂ S is invariant
manifold (set) if N0 ∈ U then
∀t: φ tN0 ∈ U

I Slow Invariant Manifold (SIM)

0 0.2 0.4 0.6 0.8 1

[S]

0

0.2

0.4

0.6

0.8

1

[E
S

]

t = 0.1

t = 0.2

t = 0.4

t = 0.3

t = 1.0t = 2.0

t = 4.0

t = 6.0t 
=

 1
0
.0

t 
=

 2
0
.0

S + E
kf1−−⇀↽−−
kr1

ES kcat−−→ E + P

k1f = k1r = kcat = 1

7 / 44



1 Introduction

2 gRRM
SIM Def.

MIM

Constructing Manifold

Using Manifold

3 Entropy Prod. Ana.

4 n-heptane/air
complex dynamics

5 Conclusion

LAV
Laboratorium für Aerothermochemie und Verbrennungssysteme
Aerothermochemistry and Combustion Systems Laboratory

Multiscale Dissipation

Davis-Skodje System (J. Chem. Phys. 1999):
dx
dt =−x

dy
dt =−γy+ (γ−1)x+γx2

(1+x)2

γ � 1,γ = 5
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Method of Invariant Manifold (MIM)

f(N(ξ )) = f(N(ξ ))‖TW
+ f(N(ξ ))⊥TW

f(N(ξ ))‖TW
= Pf(N(ξ ))

f(N(ξ ))⊥TW
= ∆ = (I−P)f(N(ξ ))

Invariance Condition

∆ = 0, ξ ∈ Ξ

MIM: The slow invariant manifold
is the stable solution of the film

extension of dynamics:

dN(ξ )

dt
= ∆

Gorban, A. N., & Karlin, I. V. (2004). Lect. Notes Phys., 660.
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Relaxation Redistribution Method (RRM)

1. Find/Choose the slow parameterization variables

2. Construct the initial guess of slow manifold

3. Relax all the points on the initial manifold

4. Points moving toward local equilibrium manifold

5. Redistribute back to neutralize slow motion
I Redistribution : Interpolation for interior
I Redistribution : Extrapolation for missing point

Chiavazzo, E., & Karlin, I. V. (2011). Phys. Rev. E., 83(3), 036706.Kooshkbaghi, M. et al., (2014). J. Chem. Phys., 141(4), 044102.
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RRM Manifold Construction
Singular perturbed system* 

dx
dt = 2− x− y

dy
dt = γ(

√
x− y)

γ � 1

Relaxation Step
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0

0.5

1

y

x

 

 

Initial grid

1 Step Relaxation, δt = 0.07

*Tsoumanis, A. C. et al., (2012). New J. Phys., 14(8), 083037.Kooshkbaghi, M. et al., (2014). J. Chem. Phys., 141(4), 044102.
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1 Step RRM

*Tsoumanis, A. C. et al., (2012). New J. Phys., 14(8), 083037.Kooshkbaghi, M. et al., (2014). J. Chem. Phys., 141(4), 044102.
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RRM Manifold Construction
Singular perturbed system* 

dx
dt = 2− x− y

dy
dt = γ(

√
x− y)

γ � 1

I ILDM manifold is neither invariant nor slow for 0≤ x. 0.7.
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Sample Trajectories
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Trajectory initialize on the RRM manifold

Trajectory initialize on the ILDM manifold

*Tsoumanis, A. C. et al., (2012). New J. Phys., 14(8), 083037.Kooshkbaghi, M. et al., (2014). J. Chem. Phys., 141(4), 044102.
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Dimensionality issues

I Computational cost
I Manifolds are represented on a grid
I Retrieving data of high dimensional tables, imposes

restrictions on the dimension

=⇒ Target : 2D/3D manifold

I Dimension of SIMs
I SIMs usually limited to a small neighborhood around

equilibrium

=⇒ How to extend it further to cover the states all the way
to the fresh mixture?

Pope, S. B. (2013). Proc. Combust. Inst., 34(1), 1-31.
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Dimensionality issues

=⇒ How to extend it further to cover the states all the way to
the fresh mixture?
I Construct the Slow invariant manifold and extend via

prolongation with linear extrapolation*

��
�
�
��
�
��
�
�
��
�
��
�

�
��
�
�
���

�
��
�
��
�

*Bykov, V., & Maas, U. (2007). Proc. Combust. Inst., 31(1), 465-472.
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Dimensionality issues

=⇒ How to extend it further to cover the states all the way to
the fresh mixture?
I Construct the Slow invariant manifold and extend via

prolongation with linear extrapolation*
��
�
�
��
�
��
�
�
��
�
��
�

�
��
�
�
���

�
��
�
��
�

I Construct the initial grid which covers the admissible
solution space and refine it via RRM, (global RRM**)
*Bykov, V., & Maas, U. (2007). Proc. Combust. Inst., 31(1), 465-472.
**Kooshkbaghi, M. et al., (2014). J. Chem. Phys., 141(4),044102.
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global RRM (gRRM)

1. Construct 2D initial grid (Ξ will be defined later)

2. Find the boundaries of initial grid
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3. Relax interior points

4. Redistribute back points on initial grid via interpolation of scattered
grid
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global RRM (gRRM)

The gRRM nd-dimensional manifold is:
I The nd-dimensional SIM +
I The extension of SIM to the far from equilibrium states

=⇒ The initial grid is important both for convergence and
accuracy of extension
=⇒ In this work the initial grid is found based on notation of
Quasi Equilibrium Manifold (QEM)
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Initial Grid via QEM (CEM)

min G
s.t. BN = ξ

B = [E Bd] and ξ = [ξ e
ξ

d]

I ne×ns elemental constraints matrix, E

EN = ξ
e

ξ
e is specified by the initial composition

Eji : number of atoms of element j in species i

I nd×ns constraints matrix Bd

(Bd)N = ξ
d

ξ
d : slow parameters

Bd : rows define the linear combination of N as the slow constraints
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Manifold parametrization Ξ / Proper choose for extension

How to Choose a good set of constraints Bd?

I Rate-Controlled Constrained-Equilibrium method (RCCE)

I constraints for H2/air combustion with ns = 9 species and nr = 21

elementary reactions*
Reduce Parameter** H2 N2 H O OH O2 H2O HO2 H2O2

ξ1=Total Mole 1 1 1 1 1 1 1 1 1
ξ2=Active Valence 0 0 1 2 1 0 0 0 0
ξ3=Free Oxygen 0 0 0 1 1 0 1 0 0

Bd =

 1 1 1 1 1 1 1 1 1
0 0 1 2 1 0 0 0 0
0 0 0 1 1 0 1 0 0


*Li, J. et al., (2004). Int. J. Chem. Kin., 36(10), 566-575.**Tang, Q., & Pope, S. B. (2004). Combust. Theory Model., 8(2), 255-279.
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gRRM for H2/air combustion

ns = 9 Species, T0 = 1500K, P = 1atm, φ = 1.0
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gRRM for H2/air combustion

ns = 9 Species, T0 = 1500K, P = 1atm, φ = 1.0
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H2/air auto-ignition

Adiabatic, constant pressure reactor
T0 = 1500K, P = 1atm, φ = 1.0

2D manifold results
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H2/air auto-ignition

Adiabatic, constant pressure reactor
T0 = 1000K, P = 1atm, φ = 1.0

2D manifold results
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H2/air auto-ignition

Adiabatic, constant pressure reactor
T0 = 1000K, P = 1atm, φ = 1.0

3D manifold results
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Entropy Production

ns

∑
i=1

ν
′
ikNi


ns

∑
i=1

ν
′′
ikNi, k = 1, · · · ,nr

qk = qfk −qrk = kfk

ns

∏
i=1

[Ni]
ν ′ik − krk

ns

∏
i=1

[Ni]
ν ′′ik , k = 1, · · · ,r

The entropy production per unit volume

1
V

dS
dt

= Rc

nr

∑
k=1

(qfk −qrk )ln
(

qfk
qrk

)
The relative contribution of each reaction in total entropy production at time

t

rk(t) =
Rc(qfk −qrk )ln

(
qfk
qrk

)
1
V

dS
dt

Threshold for contribution
rk(t)≥ ε%
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Most-Contributing Reactions

n-heptane LLNL2 Mechanism (ns = 561, nr = 2539)*
T0 = 650 K, P = 1 atm, φ = 1

ε = 5%
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*Curran, H. J., et al., (1998). Combust. Flame, 114(1), 149-177.
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Skeletal Mechanism for n-heptane/air kinetics

I Detailed Mechanism (D561): ns = 561, nr = 2539
I Sampled points took from autoignition in adiabatic

constant pressure reactor
I 650≤ T0 ≤ 1400 K
I 1≤ P≤ 20 atm
I 0.5≤ φ ≤ 1.5

I ε = 0.2%−→ ns = 203, nr = 879 (R203)
I ε = 0.6%−→ ns = 149, nr = 669 (R149)

Kooshkbaghi, M., et al., (2014). Combust. Flame, 161(6), 1507-1515.
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Validation : Ignition Delay
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Validation : Single-Zone Engine Model

Tinlet = 650 K, Pinlet = 5 atm, φ = 0.8 at −40 oATDC, ω = 700 rpm
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Figure: Temperature (a), pressure (b) and selected species
concentration (c,d) profiles for the single-zone engine model. The
lean fresh mixture (φ = 0.8) is injected at −40 0ATDC with p0 = 5
atm and T0 = 750 K (D561: solid line, R203: circles, R161: dashed
line).
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Validation : Laminar Premixed Flame

Tu = 650 K, P = 1 atm
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PSR setup and hysteresis of temperature

dYk

dt
=

Wkω̇

ρ
+

Y0
k −Yk

τ

dT
dt

=−∑
ns
i=1 Wiω̇ihi

ρcp
+

∑
ns
i=1 Y0

i (h
0
i −hi)

cpτ
− Q̇loss

ρcp

Parameters
τ: Residence Time
p: Reactor Pressure
φ : Inlet Mixture
T0: Inlet Temperature
Q̇loss: Heat loss per unit volume

Typical S-shaped bifurcation diagram
of a PSR

Numerical tool
AUTO-07p: Continuation and

Bifurcation Software for ODEs +
CHEMKIN III: Chemical kinetics data

33 / 44



1 Introduction

2 gRRM

3 Entropy Prod. Ana.

4 n-heptane/air
complex dynamics
PSR Setup

Validation of Ske. Mech.

1P Cont.

Multi-P Cont.

5 Conclusion

LAV
Laboratorium für Aerothermochemie und Verbrennungssysteme
Aerothermochemistry and Combustion Systems Laboratory

Validation Of Skeletal Mechanism
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One parameter continuation
Reactor Temperature vs Residence Time

T0 = 700 K, φ = 1.0, p = 1 atm
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One parameter continuation
Reactor Temperature vs Residence Time

T0 = 700 K, φ = 1.0, p = 1 atm
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One parameter continuation
Reactor Temperature vs Equivalence ratio

T0 = 700 K, φ = 1.0, p = 1 atm
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One parameter continuation
Reactor Temperature for non-adiabtic reactors
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Multi-parameter continuation
Continuation in (T0− τ) parameters
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Multi-parameter continuation
Continuation in (T0− τ−φ) parameters
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Directions for future work

I Entropy Production Analysis
Generate Skeletal Mechanisms for Heavy Fuels

n-decane (n-C10H22) (p = 20 atm, φ = 1.0, T0 = 700 K)
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