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Motivation

Challenges and Motivation

> Every Mesh Grid, Every Time Step
1. Mass Conservation Equation
2. Momentum Conservation Equations
3. Energy Conservation Equation
4. ng PDE:s for temporal evolution of ng species

» Size of detailed chemical kinetics

2-methyl alkanes (LLNL)*
methyl palmitate (CNRS)

Ranzi mechanism
comlete, ver 1201 ¥ Biodiesel (LLNL)
C16 (LN'm myp

mé:ﬁ%bm). .914(|_|_N|_) CHy CsHjg CioHz CiaHps  CyoHyp-2

iso-octane (LLNL).- 28 PRF (LLNL) Species 53 561 940 1282 7200

isooctane (ENSICCNRS) Ak 1 nepians (LLNL) Reactions 325 2539 3878 5030 31400

Gasolne (Raj etal) _JeiSURF 2.0 Sizes of detailed reaction mechanisms for
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CH4 (Konnov)
USC c1-c4
USC C2H4

Keletaliso-octane (Lu & Law) sample hydrocarbons
Rkeletal n-heptane (Lu & Law)

Number of reactions
)
2
T

3
ct-c3 @neta) £ e Curan)
GRI30 @ -4 neo-pentane (LLNL)
before 2000
GRI12 ’.CZHA (San Diego) 2000-2004
. CH4 (Leeds) 2005_2009
B n .

* since 2010
1 1

10° 10° 10°
Number of species
Lu, T., & Law, C. K. (2009). Prog. Energ. Combust., 35(2), 192-215.
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Motivation

Challenges and Motivation

> Every Mesh Grid, Every Time Step
1. Mass Conservation Equation
2. Momentum Conservation Equations
3. Energy Conservation Equation
4. ng PDE:s for temporal evolution of ng species

» Stiffness/ Non-linearity

- - C T T T T T
chemical time scales physical time scales F T 5 2400
[ P a
- r 22,
slow time scales S r ¢ 2200
— SIS
4x10 T 2000
1072 s L
= E 1800
flow > F
transport - r o
- < [
104 turbulence Q ISC 1600 E‘
Z 3x10 "¢ =
— E £ 1400
6 | = £
fast time scales 107s &= £ 1200
steady states — s r -
partial equilibria %10
857 E 1000
- E 800
Goussis, D. A., & Maas, U. (2011). In Turbulent E

-15
Combustion Modeling (pp. 193-220). X107 005 0.1 0.15 0.2
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Computational Cost Reduction for Chemical Kinetics

A Time scale analysis:
Describe chemistry using fewer variables.
v" QSSA: Bodenstein (1913)
v/ CSP: Lam & Goussis (1989)
V' ILDM: Maas & Pope (1992)
V' MIM: Karlin & Gorban (1991)

[ v" RRM: Kooshkbaghi et al. (2014) ]

Chem. Kin. Model Reduction
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Computational Cost Reduction for Chemical Kinetics

A Time scale analysis:
Describe chemistry using fewer variables.
v" QSSA: Bodenstein (1913)
v/ CSP: Lam & Goussis (1989)
V' ILDM: Maas & Pope (1992)
V' MIM: Karlin & Gorban (1991)

[ v" RRM: Kooshkbaghi et al. (2014) ]

B Conventional Reduction Methodology:
Generate smaller skeletal mechanisms from the detailed
mechanism by systematically removing unimportant species

and reactions.
v/ CSP: Massias et al. (1999)
v" DRG: Lu & Law (2005)
v PFA: Sun etal. (2010)

v Entropy Production Analysis: Kooshkbaghi et al. (2010)

Chem. Kin. Model Reduction
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Computational Cost Reduction for Chemical Kinetics

A Time scale analysis:
Describe chemistry using fewer variables.
v" QSSA: Bodenstein (1913)
CSP: Lam & Goussis (1989)

v
V' ILDM: Maas & Pope (1992)
V' MIM: Karlin & Gorban (1991)

[ v" RRM: Kooshkbaghi et al. (2014) ]

B Conventional Reduction Methodology:
Generate smaller skeletal mechanisms from the detailed
mechanism by systematically removing unimportant species

and reactions.
v/ CSP: Massias et al. (1999)
v" DRG: Lu & Law (2005)
v PFA: Sun etal. (2010)

v Entropy Production Analysis: Kooshkbaghi et al. (2010)

C Storage and Retrieval methods
V' ISAT: Pope (1997)
v PRISM: Tonse (2003)

Chem. Kin. Model Reduction
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Thesis Outline

Constructing low-dimensional
manifold and application

o|Ch. 2 * Invariance equation

= * Film extension of dynamics

* Global Relaxation Redistribution method
* Application in Hydrogen/air combustion

Ch.3  * Equilibrium and Quasi Equilibrium
* Spectral Quasi Equilibrium manifolds
* Application in Hydrogen/air, Syngas/air
and Methane/air combustion

Chemical Kinetics

(Ch. 6 * Infinite-dimensional dynamical system
* Boltzmann equation
* Analytical solution of invariance condition
* non-perturbative reduced hydrodynamic manifold

al Kinetics

Skeletal mechanism generation
and application

Ch. 4 * Entropy Production Analysis
* Most-contributing reactions
* Skeletal mechanism generation for
large fuels

Ch. 5* Complex dynamics of heavy hydrocarbon
* Bifurcation analysis
* Reactions supporting and opposing
critical behaviour

Thesis in a nutshell

Thesis Outline
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Thesis Outline

Constructing Tow-dimensional
manifold and application

«fch. 2 * Invariance equation

,n_."—: * Film extension of dynamics

k= * Global Relaxation Redistribution method
M * Application in Hydrogen/air combustion
2

Elch.3 * Equilibrium and Quasi Equilibrium
6 * Spectral Quasi Equilibrium manifolds

* Application in Hydrogen/air, Syngas/air
and Methane/air combustion

Ch. 6 * Infinite-dimensional dynamical system
* Boltzmann equation
* Analytical solution of invariance condition
* non-perturbative reduced hydrodynamic manifold

Skeletal mechanism generation
and application

Ch. 4 * Entropy Production Analysis
* Most-contributing reactions
* Skeletal mechanism generation for
large fuels

Ch. 5* Complex dynamics of heavy hydrocarbon
* Bifurcation analysis
* Reactions supporting and opposing

critical behaviour
-

Thesis in a nutshell

Thesis Outline




II. The global Relaxation Redistribution
Method
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Concept of Slow Invariant Manifold o

%

Classification of Systems
> Autonomous system
» Cauchy-Lipschitz
dN
7 (N)
[ R DS— RS
NeS,teT

¢, is called a flow where

trajectory

Equilibrium
0D SIM

N¢4 is a unique fixed point.

» In dynamical system
{T,S,¢'}, U C S is invariant
manifold (set) if Ny € U then
Vi: 9'Ng € U

» Slow Invariant Manifold (SIM)
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Concept of Slow Invariant Manifold o

Classification of Systems

> Autonomous system

» Cauchy-Lipschitz A
dN o
— =f(N ,
dt (N) A
[ R DS— RS
NeS,teT

¢, is called a flow where

N, = (PINO

N¢4 is a unique fixed point.

k.
S+E == ES L, E+p
rl
{T»S,W}, U C S is invariant B . .
manifold (set) if Ny € U then kif =kir =kear =1
Vi: 9'Ng € U

» In dynamical system

» Slow Invariant Manifold (SIM)
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Multiscale Dissipation

Davis-Skodje System (J. Chem. Phys. 1999):

SIM Def

sy
dy — v+ (yfl)x+}/x2
dt (14x)?
Y>1,y=5

1.5
n
0.5r
S
-0.5
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Multiscale Dissipation

Davis-Skodje System (J. Chem. Phys. 1999):

SIM Def

d_
dy — v+ (yfl)x+}/x2
dt (14x)?
Y>1,y=5
1.5
H
0.5
ES
05
b
18k
) 0.2 04 06 038 1
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Multiscale Dissipation

Davis-Skodje System (J. Chem. Phys. 1999):

SIM Def

=
dy _ (y—1)x+yx?
a = W e
y>1y=5
1.5r
ost ]
> o -
-0.5
4
-1.51

0 0.2 0.4 0.6 0.8 1




o fr und
ZUuric Aerothermochemistry and Combustion Systems Laboratory

Multiscale Dissipation

Davis-Skodje System (J. Chem. Phys. 1999):

SIM Def

e
dy _ gy (-Driy?
= Wt T2
y>1Ly=5

1.5
H

N S

> o -

05
b
-150

o 02 0.4 06 08 1
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Multiscale Dissipation Sivt Dt

Davis-Skodje System (J. Chem. Phys. 1999):

f=—x
& = -+ I
Y>1,y=5
3
2
1
S 0

-1
-2
-3
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Multiscale Dissipation Sivt Dt

Davis-Skodje System (J. Chem. Phys. 1999):

dx:_x

&t
dy _ (r=Daxtyr®
@ =W iy

y>1,7=5

x=xpe !

—t 0

xpe _
+ C(xpsy0)e "

y= 14+ xpe™!




LAV 7

ETH:zirich

i un
Aerothermochemistry and Combustion Systems Laboratory

Multiscale Dissipation

Davis-Skodje System (J. Chem. Phys. 1999):

dx _

b e
dy y—1)x+7yx
P72t Al iy g

Y>1

= YSIM = Tix

Sample Trajectories 0.8|

0.2
0.0

S1M 0 1 2 3 4

/ = 1.0}
0.5

\ v
~Sample Trajectories

1.5 — Detailed

e o Reduced Model: y=x/1+x

0.0

0.6 08 1 12 14 15 0

SIM Def
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Method of Invariant Manifold (MIM)

FIN(E)) =F(N(&))ypy,, +F(N(E)) L,

FIN(E))ypy,, =BF(N(E))
FIN(E)) Ly, =A=(I=P)f(N(E))

Invariance Condition

PhaseSSpace

A=0, Eeck

MIM: The slow invariant manifold
is the stable solution of the film
extension of dynamics:

dN(§)
dt

Gorban, A. N., & Karlin, I. V. (2004). Lect. Notes Phys., 660.
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Relaxation Redistribution Method (RRM)

RRM Algorithm

1. Find/Choose the slow parameterization variables

i &1 & 571:4»1 =
KBtk ¥ BealindoYaf 201 Ehehlpnfiey. 1 S5( da RS 06.
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Relaxation Redistribution Method (RRM)

1. Find/Choose the slow parameterization variables

2. Construct the initial guess of slow manifold

/’,
L
2
/

N ., U
\ -7+ equilibrium
\ -
AN &
. P
;. -~
initial grid node

ica &1 & & =
KBtk ¥ BealindoYaf 201 Ehehlpnfiey. 1 S5( da RS 06.

RRM Algorithm
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Relaxation Redistribution Method (RRM)

RRM Algorithm

1. Find/Choose the slow parameterization variables
2. Construct the initial guess of slow manifold

3. Relax all the points on the initial manifold

relazed noie

initial grid node
ica &1 & & =
KRBisyAz Rtk vk, BestindoYa 201 dhehypnfiey- i 35S dRsy06-
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Relaxation Redistribution Method (RRM)

Find/Choose the slow parameterization variables
Construct the initial guess of slow manifold

Relax all the points on the initial manifold

e

Points moving toward local equilibrium manifold

relazed noie

/ -
p —
initial grid node

ica &1 & & =
KBtk ¥ BealindoYaf 201 Ehehlpnfiey. 1 S5( da RS 06.

RRM Algorithm




LAV 7

r N il und

Relaxation Redistribution Method (RRM)

Find/Choose the slow parameterization variables
Construct the initial guess of slow manifold
Relax all the points on the initial manifold

Points moving toward local equilibrium manifold

A

Redistribute back to neutralize slow motion

> Redistribution : Interpolation for interior
> Redistribution : Extrapolation for missing point

node after redistribution

initial grid node
Sice &im1 & &in =
KBiviaseet; vt BeslindoYaf201Ennlipnfier: 1535 SR 06.

RRM Algorithm
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Relaxation Redistribution Method (RRM)

Find/Choose the slow parameterization variables
Construct the initial guess of slow manifold
Relax all the points on the initial manifold

Points moving toward local equilibrium manifold

A

Redistribute back to neutralize slow motion

> Redistribution : Interpolation for interior
> Redistribution : Extrapolation for missing point

node after redistribution

initial grid node

iz &1 & &G =
KBisves St ¥ KaalindoYa 29 Ehhhpnier. 1135 h PRSI 06-

RRM Algorithm
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RRM Manifold Construction

Singular perturbed system*

dx _
G=2—x—y

%ZY(ﬁfy)
y>1

Relaxation Step

0O Initial grid
O 1 Step Relaxation, §t = 0.07

002040608i

-0.5

KOst MCecArl 380427 Newerh. Tyss.  H34554081002.

RRM Algorithm
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RRM Manifold Construction

Singular perturbed system*

d
‘Ff =2—x—y
ly _
7 =vx—y)
y>1
Redistribution Step
1 o5 o
o
o
Of_ _ppe@®833330
05 a0,
& H =]
= %X g
o, .
OF m]
O Initial grid
O 1 Step Relaxation, §t = 0.07
* 1 Step RRM
-0.5~— '

0 02 0l4x016 08 1

KOst MCecArl 380427 Newerh. Tyss.  H34554081002.

RRM Algorithm
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RRM Manifold Construction

Singular perturbed system*

7—2 x—y
d,—Y\[fy)
y>1

» ILDM manifold is neither invariant nor slow for 0 < x < 0.7.

- - Sample Trajectories
—RRM Manifold
===ILDM

O Trajectory initialize on the RRM manifold
© Trajectory initialize on the ILDM manifold

0 02 04 _06 08 1
T

KOst MCecArl 380427 Newerh. Tyss. #4304 554081002.

RRM Algorithm
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Dimensionality issues

Dimensionality

» Computational cost

» Manifolds are represented on a grid
» Retrieving data of high dimensional tables, imposes
restrictions on the dimension

= Target : 2D/3D manifold

Pope, S. B. (2013). Proc. Combust. Inst., 34(1), 1-31.
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Dimensionality issues

» Computational cost
» Manifolds are represented on a grid
» Retrieving data of high dimensional tables, imposes
restrictions on the dimension
= Target : 2D/3D manifold
» Dimension of SIMs
» SIMs usually limited to a small neighborhood around
equilibrium
= How to extend it further to cover the states all the way
to the fresh mixture?

Pope, S. B. (2013). Proc. Combust. Inst., 34(1), 1-31.
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Dimensionality issues

— How to extend it further to cover the states all the way to
the fresh mixture?

» Construct the Slow invariant manifold and extend via
prolongation with linear extrapolation*®

*Bykov, V., & Maas, U. (2007). Proc. Combust. Inst., 31(1), 465-472.

Dimensionality
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Dimensionality issues

= How to extend it further to cover the states all the way to
the fresh mixture?

Dimensionality

» Construct the Slow invariant manifold and extend via
prolongation with linear extrapolation*®

» Construct the initial grid which covers the admissible
solution space and refine it via RRM, (global RRM*%*)

*Bykov, V., & Maas, U. (2007). Proc. Combust. Inst., 31(1), 465-472.
**Kooshkbaghi, M. et al., (2014). J. Chem. Phys., 141(4),044102.
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global RRM (gRRM)

1. Construct 2D initial grid (E will be defined later)

2. Find the boundaries of initial grid

@ Equilibrium

M Fresh Mixture
1.4
1.2]
1
0.8
0.6
0.4/

0.2 L4

8 3 32 B4 36 38
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global RRM (gRRM)

1. Construct 2D initial grid (E will be defined later)

2. Find the boundaries of initial grid

@ Equilibrium
M Fresh Mixture|

3. Relax interior points

4. Redistribute back points on initial grid via interpolation of scattered
grid
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global RRM (gRRM)

The gRRM n4-dimensional manifold is:
» The ny-dimensional SIM +

» The extension of SIM to the far from equilibrium states
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global RRM (gRRM)

The gRRM n4-dimensional manifold is:
» The ny-dimensional SIM +
» The extension of SIM to the far from equilibrium states

— The initial grid is important both for convergence and
accuracy of extension
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global RRM (gRRM)

The gRRM n4-dimensional manifold is:
» The ny-dimensional SIM +
» The extension of SIM to the far from equilibrium states

— The initial grid is important both for convergence and
accuracy of extension

= In this work the initial grid is found based on notation of
Quasi Equilibrium Manifold (QEM)




o fr und
ZUuric Aerothermochemistry and Combustion Systems Laboratory

Initial Grid via QEM (CEM)

min G
st. BN=¢

B —[EB|and & = [¢° &)

» n, X ng elemental constraints matrix, E

EN=£°
&° is specified by the initial composition
Ej; : number of atoms of element j in species

> 1, X ng constraints matrix B¢

(BN =¢&*

éd : slow parameters
B< : rows define the linear combination of N as the slow constraints
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Manifold parametrization E / Proper choose for extension

How to Choose a good set of constraints BY?

» Rate-Controlled Constrained-Equilibrium method (RCCE)

» constraints for Hy/air combustion with ny = 9 species and n, = 21

elementary reactions*

Reduce Parameter** H, N, H O OH O, H,O HO, H;0,
& =Total Mole 1 1 1 1 1 1 1 1 1
&=Active Valence 0 0 1 2 1 0 0 0 0
&3=Free Oxygen 0O o0 o0 1 1 0 1 0 0
1 1 11 1 1 1 11
B'=| 001210000
00011 0T1TO0O

Fleah £t &2P0B, BB/ (S8, EBmbift! Pheli§-Model., 8(2), 255-279.
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gRRM for H, /air combustion

ny =9 Species, Tp = 1500K, P =1latm, ¢ = 1.0
RCCE RRM

& =Total Mole, {;=Active Valence
Slight improvements in main species

O, fresh mixture; x , equilibrium point; — detailed kinetics path, Colored
surfaces, Manifolds
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gRRM for H, /air combustion
ny =9 Species, Tp = 1500K, P =1latm, ¢ = 1.0

RCCE RRM
02 \\ | 02
O 0.15 o 0.15
Z 0.1 % Z 0.1
0.05 0.05
9< \ ) 9< .
05 3 35 05 3

& 4 & &

& =Total Mole, &,=Active Valence
Small improvements in main radicals

O, fresh mixture; x , equilibrium point; — detailed kinetics path, Colored
surfaces, Manifolds
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gRRM for H, /air combustion

ny =9 Species, Tp = 1500K, P =1latm, ¢ = 1.0
RCCE RRM

& =Total Mole, {;=Active Valence
Small improvements in main radicals

O, fresh mixture; x , equilibrium point; — detailed kinetics path, Colored
surfaces, Manifolds
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gRRM for H, /air combustion
ny =9 Species, Tp = 1500K, P =1latm, ¢ = 1.0

x107 x10°

RCCE RRM

N~ N NN

3 32

&1
& =Total Mole, &,=Active Valence
Large improvements for low-concentration radicals

O, fresh mixture; x , equilibrium point; — detailed kinetics path, Colored
surfaces, Manifolds
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H, /air auto-ignition

Adiabatic, constant pressure reactor
To=1500K,P=1latm, ¢ =1.0

2D manifold results

D
— 2500
= .
= 4 — Detailed
2000 o RCCE TM+AV
¢ ---RRM2D
o 05 1 5 o
tls]  x1w0*
0. 0.03
0.02f
= |
o
|
> ool ]
|
|
|
-0.01
0 05 1 15 0
t(s]  x10* s
o, §x10
0.15 .
%l 5
&) I =]
=~ | =l
005} ! '\
Y 0 1T
0 05 1 5 0 05 1 15 ) 05 1 15
tls]  x1w0* t[s]  x10* tls]  x10*

To = 1500K
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H, /air auto-ignition

Adiabatic, constant pressure reactor
To=1000K, P=1latm, ¢ =1.0

2D manifold results Ty — 100K
o %107
O RCCE TM+AYhoo, 0.025 4

2500 = ='RRM2D O ?
— — 0.02
:< Dsta\\ed"] o = 3 H
o0 . JE oors = .
& g oor 2 0

1500 1 f 1

B 0.005 m, [N
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H, /air auto-ignition

Adiabatic, constant pressure reactor
To=1000K, P=1latm, ¢ =1.0

3D manifold results Ty — 100K
O ROCE TNRAVAFO o
O RCCE TM+AV 0.025|
2500 = = RRM 2D
[l - - =RRM 3D o 0.02|
22, s0g0|——Detaied © o oo
&~ o 001
1500 1
H 0,005,
1 0 1
0. 0.
0.025
0.01 0.02}
>? © 0.015]
0.005 0.01
0.005
1 1
o x107
0.2]
E‘ 0.15| % ,
S o0 >
0.05]
1 1




3 Entropy Prod. Ana.

III. Entropy production analysis for
mechanism reduction
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Entropy Production
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Entropy Production
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Entropy Production
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Entropy Production

g s
/ N 1 —
ZvikN-ﬁZv,-kNi, k=1,---,n,

qqufk qu*kka[N 'k_kaH[N]’k k:17"'7r

i= i=1

The entropy production per unit volume

1dS ny qf,
—R. Nin | 2
Vi leﬁ mn(q

Tk

The relative contribution of each reaction in total entropy production at time
t

95,
R,{-(qfk —qr)n (ﬁ)

1dS
Vdr

ne(t) =

Threshold for contribution
rk(t) > &%

Entropy Production




Most-Contributing Reactions

n-heptane LLNL2 Mechanism (ny = 561, n, = 2539)* gy Bt
To=650K,P=1atm, ¢ =1
£=5%
3400 (@) nchto,=c;h, ~1/2/3/4+ho,
nc_h, _+oh= c,| h 2+ho

nthi;+oh C h ’%+h0
3000 nc_ket, =nc L c}m+ch ,coch +oh
b nc kel h cho+c h couh *+oh
(b) nc7ketbp hwgho+nc h u)(.h +oh (d)
2600 c;h o(fh1 -4=ch 0 4+0h
ch 4,00h-5=c_h, 0,-5+0h

c7h|4ooh 6—ch o -5+oh

C c Zoh+2cl
(©) 0,¢,h,0h =oh+2ch,0

E 2200 ch,cho+o,=ch,o+co+oh
=
H

1800 hocho+oh =h o+co,+h
hocho+h =h,+co, +h
(d)  hocho+oh —fn 0+<.0 +h

1400 h+oh=h,0
co+o = coZ
1000
(a) (b
600 (©)

0 002 0.04 006 008 0.1 0.12 0.14 016 0.18 02

s
*Curran, H. J., et al., (1998). Combust. Flame, 114(1), 149-1 ]
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Generate Skeletal Mechanism

. . . 1 Mechanism Gen.
Most-contributing reactions

[nc7h16ﬁ-02=F7h15— 1/2/3/4

nc7h " 6+oh:c7h ] S—2+ho2

nch, +oh=ch -3+ho

nc7ket24=nc3 cho coch_+oh

| 7
nc ket2 =c_h_chol coch_f+oh

nc7ket42= chorne,h.coch,+oh

c.h ,0oh -4=c_h o0 -4#oh
7714997 71471
c7h1400h2-5:c h 0. -5#0

7142
c7h1400h3—6 c_h o, -5#oh

°h,ch +02:ch20+l+oh
ozczﬁ4oq =oh+ ‘
hochod+oh ih o
hocho+h u Co,+
hocho+oh = o+c02+h

h+oh=ho

co+o f co,




o fr und
ZUuric Aerothermochemistry and Combustion Systems Laboratory

Generate Skeletal Mechanism

. . . Skeletal Mechanism Gen.
Most-contributing reactions

[nc7h16ﬁ-02=F7h15— 1/2/3/4

nc.h Foh=c_h, -2+ho, Important Species

nc_h _+oh=c_h _-3+ho

nc;kgfzfn% _chojHch.coch froh nc7hyg, 02, C7h15'1/2/3/4’
nc_ket, =, h_cho| coch_f+oh h

3 07, oh, ncrketyy, ncyket
nc_ket, ,=Fh-chopnc,h. coch +oh 2 TRCR24 7RSS,
c;h,00h -4=c_h o -4ioh ncrketyy, - - -
c7hl 400h2-5:c7h1 402-5 t+0
c7h1 400h3—6=c7h1 402—5 troh

°h,ch +02:ch20+l+oh
ozczﬁ4oq =oh+ ‘
hochod+oh ih o
hocho+h u Co,+
hocho+oh = 2o+c02+h
h+oh= h2o

co+o f co,
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Generate Skeletal Mechanism

Most-contributing reactions

[nc7h16ﬁ-02=F7h15— 1/2/3/4

nc.h Foh=c_h, -2+ho, Important Species

nc_h _+oh=c_h _-3+ho

nc;kgfzfnc3 _cholteh. coch f-oh nc7hyg, 02, C7h15-1/2/3/4,
nc_ket, =, h_cho| coch_f+oh h

3 07, oh, ncrketyy, ncyket
nc_ket 45= “chofHhe,h. coch J+oh 2 TRCR24 7RSS,
c;h,00h -4=c_h o -4ioh ncrketyy, - - -
c;h,,00h -5=c-h, 0,-5{+0 o
c7h1 400h3—6=c7h1 402—5 troh

Skeletal Mechanism Genera

°h,ch +02:ch70+l+oh _
—oht Eliminate non-important
0,C,11,0f =oh+2ch o] P

species

hochd+oh h,g > Keep all elementary reactions
hocho+h =h,f-co_+

including important species
hocho+oh = 2o+c02+h g 1mp P 4

h+oh=h,o0

co+o f co,




o fr und
ZUuric Aerothermochemistry and Combustion Systems Laboratory

Skeletal Mechanism for n-heptane/air kinetics

v

Detailed Mechanism (D561): n; = 561, n, = 2539

Sampled points took from autoignition in adiabatic
constant pressure reactor

» 650 <Tp <1400 K
» 1 <P<20atm
» 05<¢9<15

» £€=0.2% — ny, =203, n, = 879 (R203)
» £€=0.6% — ny, =149, n, = 669 (R149)
Kooshkbaghi, M., et al., (2014). Combust. Flame, 161(6), 1507-1515.

v
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Validation : Ignition Delay

10°E -
E E Validation of Ske. Mech.
10'E -
—_— 107 -
2, F E
20 ]
l-) — .
10° E
4

10 — D561 E
o R203 E
--- RI49 ]

10 \ \ \ \ \

12 1.4 1.6
1000/T,, [1/K]

Kooshkbaghi, M., et al., (2014). Combust. Flame, 161(6), 1507-1515.
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Stiffness
1078 E T T T T T T T
E T0 =650 K [ T 2400
10'9 ;_ - _fisi - P = latm Validation of Ske. Mech.
L N i
g 0 =10 2200
= 1
i ' — 2000
10" Tfast 1
= E ————
< e e - —{ 1800
[ lo-ll = \\ —
s E — 1600 N
O [ [S—
3 - I
g107E | — 1400
'F: E 1
[ T Dol | — 1200
0P ©0—0R203 |
E —- RI149 "
u \ 1000
10
E 800
S — |
10" : . ' . ' ' 600

(=]

0.05 0.1
t [s]

Kooshkbaghi, M., et al., (2014). Combust. Flame, 161(6), 1507-1515.
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Validation : Single-Zone Engine Model
Tinter = 650 K, Pjyjer = 5 atm, ¢ = 0.8 at —40 °ATDC, @ = 700 rpm

v, Validation of Ske. Mech.
2500 & Xy
k 4
\ % Q.
2000F "o,
= d
1500 q
1000 &
o0
-40  -20 0 20 40 60 80 100 -40  -20 0 20 40 60 80 100
Crank Angle ['/ATDC] Crank Angle ['ATDC]
10?
1
10*
&1 £
E 210°
= =
21 2
s S10°

Sl

-5 @ T
10- 0 -20 0 20 40 60 80 100 -40  -20 0 20 40 60 80 100
Crank Angle ["’ATDC] Crank Angle ["’ATDC]
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Validation : Laminar Premixed Flame

T,=650K, P=1 atm
190

|
180~ To=0650K

P=1atm

— Validation of Ske. Mech.

170
160
150
140
130
120

SL [cm/s]

2500

2400

(K]

= 2300

T

2200

| | | | | |
0.7 0.8 0.9 1 1.1 12 13 1.4

Kooshkbaghi, M., et al., (2014). Combust. Flame, 161(6), IS()7¢15I5.




4 n-heptane/air
complex dynamics

IV. n-heptane/air complex dynamics




o fr und
ZUuric Aerothermochemistry and Combustion Systems Laboratory

PSR setup and hysteresis of temperature

Qloss T Strongly burning branch
¢
Ty ¥° = T € Extinction
P S~
T~a \Unstable branch
dYy Wi  Y)—Y ~—o
d P T Ignition\
dl _ 27;| W;;h; n Weakly reacting M
dt pcp :
. Text Tign T
s yO(RO — b, . . . .
%T’l) _ Qioss Typical S-shaped bifurcation diagram
@ per of a PSR
Parameters Numerical tool
7: Residence Time AUTO-07p: Continuation and
p: Reactor Pressure Bifurcation Software for ODEs +
¢: Inlet Mixture CHEMKIN III: Chemical kinetics data

To: Inlet Temperature
Qjoss: Heat loss per unit volume
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Validation Of Skeletal Mechanism

2750

2500

Validation of Ske. Mech

2250
2000
E€1750
1500
1250
1000

750

EENRETIT B R ARETT BRI SR ERRETT S RTET EEwaTn |
10° 10 10 10° 10° 10° 10
T [s]
Dependence of reactor temperature on residence time of adiabatic PSR
To=650K, ¢ =1.0

D561 (solid lines) and R149 (open circles)
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One parameter continuation

Reactor Temperature vs Residence Time

To=700K, ¢ =1.0,p=1atm

2600 I T
+ strongly burning i
2400 — =
2200 — T M
8 800 [~ -
2000 — H
- "), -
1800 7p, [HB, HB
F N (0 -
24, 1600~ TP H
— L S~ 3N ]
& 1400} T J0——oTp, H
F AT I J
12001 unstable branch \\\\ o g
1000 ‘\\\ |
r B, ~~.TP;
800~ TP@_—/‘D%
— 3 HB cool flame J
6001 extinguished TP 1 |

10° 100 10t 100 100 10 10°
Kooshkbaghi, M., et al. (2015). Combust. Flame. T [s]




One parameter continuation

Reactor Temperature vs Residence Time

1600]
1400
= 1200
] TP, - 1K
1000
500
To=700K, ¢ =1.0,p=1atm T ot
2600 e time [s]
- \Imlwl\ burning q
2400 - - 2400]
[ ] 2200]
L 2000]
22001 Z 1800]
|- —1600|
2000 = Lo TP, + 1K
1200
1800 TP, 1000
& 1600 e i
= 1400 , time [s]
12001 730
1000~ 2
800 70 TP,- 1K
6000 exlingl‘liihed ‘ ‘ ‘ ‘ ‘ 700
107(1 1075 104 ]0 1072 lol 100 0.005 0.01 [“f;‘”e‘s[g] 0.02 0.025 0.03
T [s] 800f
750
g™
£ 650
. 600]
Kooshkbaghi, M., et al. (2015). Combust. Flame. 0 8270205 021 0215 022
o,

002 004 006 008 01 012
time [s
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One parameter continuation

Reactor Temperature vs Equivalence ratio

To=700K, ¢ =1.0,p=1atm

2600
200
2200~
2000~
1800 -

g 1600

& Lo
1200 —

1000 —

600 —

wo- e
63 1

ol umu\ L wmm\ EEETTT A
6 s

10 10° (N 10° 10"

Resndence Time [s]

0

10

To=700K, t=10"3s,p=1atm

2400
2200
2000
1800
g 1600
1400
1200
1000

800

B L I

strongly-burning B

For fixed residence time, the change of reactor temperature respect to the inlet mixture
composition.




One parameter continuation

Reactor Temperature vs Equivalence ratio

To=700K,7=10"s,p=1atm 2400
2400 T T T = 2000
T T \2219 K T T T T T T T T % 1600
2200~ 7 = 1200
2000 strongly-burning i 800
1800 - 2400
= 1600 — 2000
=) \TP, = 1600
= L L | [
MO0 TP | eable 1200 -
Riaiatst 800
12001 T=1296K B
1000 unstable cool flame 200
= 2000 —
800 % 1600
[ R A B | = 200
15225 335 4 45 555 6 05 200
¢ 800 =

o

For fixed residence time, the change of reactor temperature respect to the inlet mixture
composition.
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One parameter continuation

Reactor Temperature for non-adiabtic reactors

T T
[ | [ Tdesls) |
— 1160
22501~ &
8 1 11ss
2000}~ B A
JERIRLLLLLLAR AL
1120 .
1750 (- il
E 1115
= “
= 1500 | o
L < - 1 105
PR NN P TETTTTTNRTRY F|
1250 — 1x107 2x10° N 6.4 7.20 — 1100
|800 F AT T e )] 1092
10001750 RN g, 1090
S ’ —_
L e 1< 1088
A — JB, ) & 1086
ERLY IR v Y R Ry
(O R T R TV S T [V R [0Sl el SR TS O
T [s] 0 100 200 300 400

Dependence of reactor temperature on residence time for non-adiabatic PSR

t[s]

p=1latm, To =700 K, ¢ = 1 and Qjs; = 0.1kJ /(s x m?)
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Multi-parameter continuation

Continuation in (7 — T) parameters

0

r \lsl\um‘ e B B A NP
1800: Frrrr g | 2400
s 750 qCP 2000
1600 F 1600 L.
F 700 10°10°10*10° 10210 10
F 650: 2500 | D]
1400 - E TPBX 200{)j ( )i
= E E vl 1 so0 . ]
M r 3 2 7 L N 1
1200 10 107 oo ET =L
" e, 1 250d¢ 107 10" 107 107 10
5 1 2000 7/
C h [ c
1000 |- TPB, 11500 =~ ©
F 4 1000 Te~e
E ] =TT T
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000 " N v RN ST 1\:;?%;\‘\-_\ 3
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Multi-parameter continuation

Continuation in (Ty — T — ¢) parameters

1.2 - Multi-P Cont
/\\
1.1 +
1L
1) \

C 1074 103 1
7s]

02 10-1
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Summary

Model Reduction for
Chemical Kinetics

Constructing Skeletal
Slow Mechanism
Manifolds Generation
Relaxation Entropy
Redistribution Production
Method Analysis
FORTRAN CODE + CHEMKIN FORTRAN CODE + CHEMKIN
for up to 3D manifolds for autolrnated skeleltal
mechanism generation
sample ODE sample ODE
Hydrogen/air autoignition n-heptane/air D561
Defect of Invariance analysis R203/R149
Validation:
Auto-ignition

Premixed flame

Bifurcation Computational Singular
Analysis for PSR Perturbation
AUTO + CHEMKIN FORTRAN CODE + CHEMKIN




Directions for future work

» Entropy Production Analysis

Generate Skeletal Mechanisms for Heavy Fuels

n-decane (n-CjoHpz) (p = 20 atm, ¢ = 1.0, Tp = 700 K)
2000 —— — I — T — I

100 LLNL mechanism _

or ~ n=2115,n=8157 ]

or -~ n=281,n =995 ]
1600 [~

1500 —
<l
= L

1200 —

1100 —

1000 —

900 [~

800 —

700

| |
0 0.002 0.004 0.006 0.008 0.01 0.012

time [s]
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Directions for future work

» Entropy Production Analysis
Direct Numerical Simulations using skeletal mechanisms

CHy/air premixed flame (p = 1 atm, ¢ = 0.9, Ty = 300 K, 5_/ =

2200

2000

1800

1600 |

1400

EA 1200
=~

1000

800

600

400

200

-0.2 -0.1 0

0.1
X [cm]

0.045
0.04
0.035
0.03
0.025 =
0.02
0.015
0.01

0.005

0.2 0.3 0.4 0.5

Detailed D35 (solid lines), Skeletal R20 (dashed lines)
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Directions for future work

» Entropy Production Analysis

Direct Numerical Simulations using skeletal mechanisms

CHy/air premixed flame (p = 1 atm, ¢ = 0.9, To = 300 K, & = %)
max W
Periodic
CHa/Alr  pfoy ,2;
Tp =300 K ———>> —> | 5
p=1atm > —_— > | —
=0.9
¢=0. outflow | |l
=
Periodic

L = 405,

Directions for futu
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Directions for future work

» Entropy Production Analysis
Direct Numerical Simulations using skeletal mechanisms

CHy/air premixed flame (p = 1 atm, ¢ = 0.9, Ty = 300 K, & = ——0

)

Temperature contours
Detailed (D35)

Reduced (R20)
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