On The Model Reduction for Chemical and Physical Kinetics

Mahdi Kooshkbaghi

Aerothermochemistry and Combustion Systems Laboratory Swiss Federal Institute of Technology

PhD Thesis Presentation 18th August 2015 Introduction

2 gRRM

3 Entropy Prod. Ana.

4 n-heptane/air complex dynamics

Outline

Introduction and Motivation

The global Relaxation Redistribution Method

Entropy production analysis for mechanism reduction

n-heptane/air complex dynamics

Summary and future works

1 Introduction

2 gRRM

Entropy Prod. Ana.

4 n-heptane/air complex dynamics

Challenges and Motivation

Every Mesh Grid, Every Time Step

- 1. Mass Conservation Equation
- 2. Momentum Conservation Equations
- 3. Energy Conservation Equation
- 4. ns PDEs for temporal evolution of ns species

1 Introduction

Motivation

Chem. Kin. Model Reduction Thesis Outline

2 gRRM

3 Entropy Prod. Ana.

4 n-heptane/air complex dynamics

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Challenges and Motivation

► Every Mesh Grid, Every Time Step

- 1. Mass Conservation Equation
- 2. Momentum Conservation Equations
- 3. Energy Conservation Equation
- 4. ns PDEs for temporal evolution of ns species

Size of detailed chemical kinetics

CH₄ C7H16 C10H22 C12H26 C20H42-2 561 1282 7200 940 325 2539 3878 5030 31400 Sizes of detailed reaction mechanisms for sample hydrocarbons

1 Introduction

Motivation

Chem. Kin. Model Reduction Thesis Outline

2 gRRM

3 Entropy Prod. Ana.

4 n-heptane/air complex dynamics

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Challenges and Motivation

► Every Mesh Grid, Every Time Step

- 1. Mass Conservation Equation
- 2. Momentum Conservation Equations
- 3. Energy Conservation Equation
- 4. ns PDEs for temporal evolution of ns species

Stiffness/ Non-linearity

1 Introduction

Motivation

Chem. Kin. Model Reduction Thesis Outline

2 gRRM

3 Entropy Prod. Ana.

4 n-heptane/air complex dynamics

ir Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Computational Cost Reduction for Chemical Kinetics

A Time scale analysis:

Describe chemistry using fewer variables.

- CSP: Lam & Goussis (1989)
- ILDM: Maas & Pope (1992)
- ✓ MIM: Karlin & Gorban (1991)

RRM: Kooshkbaghi et al. (2014)

Chem. Kin. Model Reduction

2 gRRM

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Computational Cost Reduction for Chemical Kinetics

A Time scale analysis:

Describe chemistry using fewer variables.

- ✓ QSSA: Bodenstein (1913)
- CSP: Lam & Goussis (1989)
- ✓ ILDM: Maas & Pope (1992)
- MIM: Karlin & Gorban (1991)

✓ RRM: Kooshkbaghi et al. (2014)

B Conventional Reduction Methodology:

Generate smaller skeletal mechanisms from the detailed mechanism by systematically removing unimportant species and reactions.

- ✓ CSP: Massias et al. (1999)
- ✓ DRG: Lu & Law (2005)
- ✓ PFA: Sun et al. (2010)

Entropy Production Analysis: Kooshkbaghi et al. (2010)

1 Introduction

Motivation

Chem. Kin. Model Reduction Thesis Outline

2 gRRM

3 Entropy Prod. Ana.

4 n-heptane/air complex dynamics

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Computational Cost Reduction for Chemical Kinetics

A Time scale analysis:

Describe chemistry using fewer variables.

- ✓ QSSA: Bodenstein (1913)
- ✓ CSP: Lam & Goussis (1989)
- ILDM: Maas & Pope (1992)
- ✓ MIM: Karlin & Gorban (1991)

RRM: Kooshkbaghi et al. (2014)

B Conventional Reduction Methodology:

Generate smaller skeletal mechanisms from the detailed mechanism by systematically removing unimportant species and reactions.

- ✓ CSP: Massias et al. (1999)
- ✓ DRG: Lu & Law (2005)
- ✓ PFA: Sun et al. (2010)

Entropy Production Analysis: Kooshkbaghi et al. (2010)

C Storage and Retrieval methods

- (ISAT: Pope (1997)
- PRISM: Tonse (2003)

1 Introduction

Motivation

Chem. Kin. Model Reduction Thesis Outline

2 gRRM

3 Entropy Prod. Ana.

4 n-heptane/air complex dynamics

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Thesis Outline

Skeletal mechanism generation and application

Ch. 5* Complex dynamics of heavy hydrocarbon * Bifurcation analysis * Reactions supporting and opposing critical behaviour

イロト イヨト イヨト イヨト

1 Introduction

Motivation

Chem. Kin. Model Reduction Thesis Outline

2 gRRM

3 Entropy Prod. Ana.

4 n-heptane/air complex dynamics

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

large fuels

* Bifurcation analysis

critical behaviour

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Thesis Outline

Thesis in a nutshell

1 Introduction

Thesis Outline

2 gRRM

1 Introduction

2 gRRM

SIM Def. MIM Constructing Manifold Using Manifold

3 Entropy Prod. Ana

In-heptane/air complex dynamics

5 Conclusion

II. The global Relaxation Redistribution Method

メロト メポト メヨト メヨト 一日

- ► In dynamical system $\{\mathbb{T}, S, \phi^t\}, U \subset S \text{ is invariant}$ manifold (set) if $N_0 \in U$ then $\forall t: \phi^t \mathbf{N}_0 \in U$
- Slow Invariant Manifold (SIM)

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Concept of Slow Invariant Manifold

Classification of Systems

- Autonomous system
- Cauchy-Lipschitz

 $\frac{d\mathbf{N}}{dt} = f(\mathbf{N})$ $f : \mathbb{R}^{n_s} \supset S \to \mathbb{R}^{n_s}$ $\mathbf{N} \in S, t \in \mathbb{T}$ $\phi^t_{t \in \mathbb{T}} \text{ is called a flow where}$

 $\mathbf{N}_t = \boldsymbol{\phi}^t \mathbf{N}_0$

 \mathbf{N}^{eq} is a unique fixed point.

In dynamical system {T, S, φ^t}, U ⊂ S is invariant manifold (set) if N₀ ∈ U then ∀t: φ^tN₀ ∈ U

Slow Invariant Manifold (SIM)

(日)

1 Introduction

2 gRRM SIM Def. MIM Constructing Man

3 Entropy Prod. Ana

4 n-heptane/air complex dynamics

Multiscale Dissipation

Davis-Skodje System (J. Chem. Phys. 1999):

$$\begin{cases} \frac{dx}{dt} = -x\\ \frac{dy}{dt} = -\gamma y + \frac{(\gamma - 1)x + \gamma x^2}{(1 + x)^2}\\ \gamma \gg 1, \gamma = 5 \end{cases}$$

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Introduction

2 gRRM SIM Def. MIM

> Constructing Manifold Jsing Manifold

3 Entropy Prod. Ana

4 n-heptane/air complex dynamics

Multiscale Dissipation

Davis-Skodje System (J. Chem. Phys. 1999):

$$\begin{cases} \frac{dx}{dt} = -x\\ \frac{dy}{dt} = -\gamma y + \frac{(\gamma - 1)x + \gamma x^2}{(1 + x)^2}\\ \gamma \gg 1, \gamma = 5 \end{cases}$$

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Introduction

2 gRRM SIM Def. MIM

> Constructing Manifold Jsing Manifold

3 Entropy Prod. Ana

4 n-heptane/air complex dynamics

Multiscale Dissipation

Davis-Skodje System (J. Chem. Phys. 1999):

$$\begin{cases} \frac{dx}{dt} = -x\\ \frac{dy}{dt} = -\gamma y + \frac{(\gamma - 1)x + \gamma x^2}{(1 + x)^2}\\ \gamma \gg 1, \gamma = 5 \end{cases}$$

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Introduction

2 gRRM SIM Def. MIM

Constructing Manifold Using Manifold

3 Entropy Prod. Ana

4 n-heptane/air complex dynamics

Multiscale Dissipation

Davis-Skodje System (J. Chem. Phys. 1999):

$$\begin{cases} \frac{dx}{dt} = -x\\ \frac{dy}{dt} = -\gamma y + \frac{(\gamma - 1)x + \gamma x^2}{(1 + x)^2}\\ \gamma \gg 1, \gamma = 5 \end{cases}$$

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Introduction

2 gRRM SIM Def. MIM

Constructing Manifold Using Manifold

3 Entropy Prod. Ana

4 n-heptane/air complex dynamics

Multiscale Dissipation

Davis-Skodje System (J. Chem. Phys. 1999):

$$\begin{cases} \frac{dx}{dt} = -x\\ \frac{dy}{dt} = -\gamma y + \frac{(\gamma - 1)x + \gamma x^2}{(1 + x)^2}\\ \gamma \gg 1, \gamma = 5 \end{cases}$$

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Introduction

2 gRRM SIM Def. MIM

> Constructing Manifold Using Manifold

3 Entropy Prod. Ana

4 n-heptane/air complex dynamics

Multiscale Dissipation

Davis-Skodje System (J. Chem. Phys. 1999):

$$\begin{cases} \frac{dx}{dt} = -x\\ \frac{dy}{dt} = -\gamma y + \frac{(\gamma - 1)x + \gamma x^2}{(1 + x)^2}\\ \gamma \gg 1, \gamma = 5 \end{cases}$$

1 Introduction

2 gRRM SIM Def. MIM

> Constructing Manifold Jsing Manifold

8 Entropy Prod. Ana

4 n-heptane/air complex dynamics

Multiscale Dissipation

Davis-Skodje System (J. Chem. Phys. 1999):

$$\begin{cases} \frac{dx}{dt} = -x\\ \frac{dy}{dt} = -\gamma y + \frac{(\gamma - 1)x + \gamma x^2}{(1 + x)^2}\\ \gamma \gg 1, \gamma = 5 \end{cases}$$

$$x = x_0 e^{-t}$$

$$y = \frac{x_0 e^{-t}}{1 + x_0 e^{-t}} + \frac{C(x_0, y_0) e^{-y_0 t}}{y_{slow}} = \frac{x}{1 + x}$$

1 Introduction

2 gRRM SIM Def. MIM Constructing Mani

3 Entropy Prod. Ana

4 n-heptane/air complex dynamics

Multiscale Dissipation

Davis-Skodje System (J. Chem. Phys. 1999):

$$\begin{cases} \frac{dx}{dt} = -x\\ \frac{dy}{dt} = -\gamma y + \frac{(\gamma - 1)x + \gamma x^2}{(1 + x)^2}\\ \gamma \gg 1\\ \implies y_{SIM} = \frac{x}{1 + x} \end{cases}$$

1 Introduction

2 gRRM SIM Def. MIM

> Constructing Manifold Jsing Manifold

3 Entropy Prod. Ana

4 n-heptane/air complex dynamics

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < ⊙

Method of Invariant Manifold (MIM)

$$f(\mathbf{N}(\xi)) = f(\mathbf{N}(\xi))_{\parallel_{T_W}} + f(\mathbf{N}(\xi))_{\perp_{T_W}}$$

$$f(\mathbf{N}(\xi))_{\parallel_{T_W}} = \mathbf{P}f(\mathbf{N}(\xi))$$

$$f(\mathbf{N}(\xi))_{\perp_{T_W}} = \Delta = (\mathbf{I} - \mathbf{P})f(\mathbf{N}(\xi))$$
Invariance Condition
$$\Delta = 0, \qquad \xi \in \Xi$$
MIM: The slow invariant manifold
is the stable solution of the film
extension of dynamics:
$$\frac{d\mathbf{N}(\xi)}{dt} = \Delta$$

Gorban, A. N., & Karlin, I. V. (2004). Lect. Notes Phys., 660.

2 gRRN

SIM E

MIM

RRM Algorithm Constructing Manifold Using Manifold

B Entropy Prod. Ana.

h-heptane/air complex dynamics

Relaxation Redistribution Method (RRM)

1. Find/Choose the slow parameterization variables

1 Introduction

2 gRRM

MIM

RRM Algorithm Constructing Manifol

3 Entropy Prod. Ana

4 n-heptane/air complex dynamics

Relaxation Redistribution Method (RRM)

- 1. Find/Choose the slow parameterization variables
- 2. Construct the initial guess of slow manifold

RhisshRoghi, Nr. Kaslin (2014) 29.1 Chemlyph Bs. 141 (43) (344) 362.06.

2 gKKIM SIM Def. MIM RRM Algorithm

Constructing Manifold Using Manifold

3 Entropy Prod. Ana

4 n-heptane/air complex dynamics

Relaxation Redistribution Method (RRM)

- 1. Find/Choose the slow parameterization variables
- 2. Construct the initial guess of slow manifold
- 3. Relax all the points on the initial manifold

Rbisstazzagli; Nr. Kerlin (2014) 29.1 Chenlyph B. v. 141 (43) 644962.06.

2 gRRM SIM Def. MIM

> RRM Algorithm Constructing Manifold Using Manifold

3 Entropy Prod. Ana

4 n-heptane/air complex dynamics

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Relaxation Redistribution Method (RRM)

- 1. Find/Choose the slow parameterization variables
- 2. Construct the initial guess of slow manifold
- 3. Relax all the points on the initial manifold
- 4. Points moving toward local equilibrium manifold

Kbiastakagafi; N. Kaalin (2014) 29.1 Cherky phys. 141 (43) 644962.06.

2 gRRM SIM Def. MIM RRM Algorithm

Constructing Manifold Using Manifold

3 Entropy Prod. Ana

4 n-heptane/air complex dynamics

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Relaxation Redistribution Method (RRM)

- 1. Find/Choose the slow parameterization variables
- 2. Construct the initial guess of slow manifold
- 3. Relax all the points on the initial manifold
- 4. Points moving toward local equilibrium manifold
- 5. Redistribute back to neutralize slow motion
 - Redistribution : Interpolation for interior
 - Redistribution : Extrapolation for missing point

• • • • • • • • • • •

► 4 3 ×

Kbiastakagelfi; Mr. Kastlin (2014) 29.1 Chernhyph Bey. 141 (43) 644962.06.

1 Introduction 2 gRRM

SIM I

MIM

RRM Algorithm Constructing Manifol

3 Entropy Prod. Ana

4 n-heptane/air complex dynamics

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Relaxation Redistribution Method (RRM)

- 1. Find/Choose the slow parameterization variables
- 2. Construct the initial guess of slow manifold
- 3. Relax all the points on the initial manifold
- 4. Points moving toward local equilibrium manifold
- 5. Redistribute back to neutralize slow motion
 - Redistribution : Interpolation for interior
 - Redistribution : Extrapolation for missing point

KbisstakBagili, N. Kaslin, (2014).29.1 Chemly phys. 141(4), 844962.06.

1 Introduction

2 gRRM

MIM

RRM Algorithm Constructing Manife

3 Entropy Prod Ana

4 n-heptane/air complex dynamics

► 4 3 ×

Э

RRM Manifold Construction

Singular perturbed system*

$$\begin{array}{l}
\frac{dx}{dt} = 2 - x - y \\
\frac{dy}{dt} = \gamma(\sqrt{x} - y) \\
\gamma \gg 1
\end{array}$$

Relaxation Step

*KESSHRBanin, M. etal., (2014). J. Newen. Phys., 1448(4),8343702.

2 gRR

SIM E

MIM

RRM Algorithm

1 Introduction

Using Manifold

3 Entropy Prod. Ana

4 n-heptane/air complex dynamics

RRM Manifold Construction

Singular perturbed system*

$$\frac{dx}{dt} = 2 - x - y$$

$$\frac{dy}{dt} = \gamma(\sqrt{x} - y)$$

$$\gamma \gg 1$$

Redistribution Step

A B > 4
 B > 4
 B

4 ∃ ≥

2

KTSSSHRBAUTH, A.C.eetar! (2894). J. Newer. Physe, 1448(49,8343702.

2 gRRM

SIM D

MIM

RRM Algorithm

1 Introduction

Using Manifold

3 Entropy Prod. Ana

4 n-heptane/air complex dynamics

RRM Manifold Construction

Singular perturbed system*

$$\begin{cases} \frac{dx}{dt} = 2 - x - y\\ \frac{dy}{dt} = \gamma(\sqrt{x} - y)\\ \gamma \gg 1 \end{cases}$$

▶ ILDM manifold is neither invariant nor slow for $0 \le x \le 0.7$.

*KESSHRBanin, M. etal., (2014). J. Newen. Phys., 1448(4),8343702.

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

イロン スピン イヨン イヨン

1 Introduction

2 gRRN

SIM D

MIM

RRM Algorithm

Constructing Manifol Using Manifold

3 Entropy Prod. Ana

4 n-heptane/air complex dynamics

イロン 不良 とくほど 不良 とうほ

Dimensionality issues

Computational cost

- Manifolds are represented on a grid
- Retrieving data of high dimensional tables, imposes restrictions on the dimension
- \implies Target : 2D/3D manifold

Pope, S. B. (2013). Proc. Combust. Inst., 34(1), 1-31.

1 Introduction

2 gRRM

SIM Do

MIM

Constructing Manifold

Dimensionality

gRRM

RCCE

Using Manifold

8 Entropy Prod. Ana.

4 n-heptane/air complex dynamics

Dimensionality issues

Computational cost

- Manifolds are represented on a grid
- Retrieving data of high dimensional tables, imposes restrictions on the dimension
- \implies Target : 2D/3D manifold
- Dimension of SIMs
 - SIMs usually limited to a small neighborhood around equilibrium

 \implies How to extend it further to cover the states all the way to the fresh mixture?

Pope, S. B. (2013). Proc. Combust. Inst., 34(1), 1-31.

1 Introduction

2 gRRM

SIM Do

MIM

Constructing Manifold

Dimensionality

gRRM

Using Manifold

8 Entropy Prod. Ana.

4 n-heptane/air complex dynamics

Dimensionality issues

 \implies How to extend it further to cover the states all the way to the fresh mixture?

Construct the Slow invariant manifold and extend via prolongation with linear extrapolation*

*Bykov, V., & Maas, U. (2007). Proc. Combust. Inst., 31(1), 465-472.

1 Introduction

2 gRRM SIM Def.

Constructing Manifold

Dimensionality gRRM

Using Manifold

Entropy Prod. Ana.

4 n-heptane/air complex dynamics

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Dimensionality issues

 \implies How to extend it further to cover the states all the way to the fresh mixture?

Construct the Slow invariant manifold and extend via prolongation with linear extrapolation*

Construct the initial grid which covers the admissible solution space and refine it via RRM, (global RRM**) *Bykov, V., & Maas, U. (2007). Proc. Combust. Inst., 31(1), 465-472. **Kooshkbaehi, M. et al. (2014). J. Chem. Phys., 141(4).044102.

2 gRRM SIM Def. MIM Constructing Mani Dimensionality gRRM RCCE

Entropy Prod. Ana.

4 n-heptane/air complex dynamics

イロン イボン イヨン イヨン 一日

global RRM (gRRM)

- 1. Construct 2D initial grid (Ξ will be defined later)
- 2. Find the boundaries of initial grid

MIM Constructing Dimensional

gRRM

RCC

Using Manifold

3 Entropy Prod. Ana.

4 n-heptane/air complex dynamics

global RRM (gRRM)

- 1. Construct 2D initial grid (E will be defined later)
- 2. Find the boundaries of initial grid

- 3. Relax interior points
- 4. Redistribute back points on initial grid via interpolation of scattered grid

1 Introduction

2 gRRM

SIM De

MIM

Constructing Manifold

Dimensionalit

gRRM

RCC

Using Manifold

3 Entropy Prod. Ana.

4 n-heptane/air complex dynamics

global RRM (gRRM)

The gRRM *n*_d-dimensional manifold is:

- The n_d -dimensional SIM +
- The extension of SIM to the far from equilibrium states

1 Introduction

2 gRRM

SIM De

MIM

Constructing Manifold

Dimensional

gRRM

RCC

Using Manifold

B Entropy Prod. Ana.

4 n-heptane/air complex dynamics

global RRM (gRRM)

The gRRM n_d -dimensional manifold is:

- The n_d -dimensional SIM +
- The extension of SIM to the far from equilibrium states

 \implies The initial grid is important both for convergence and accuracy of extension

1 Introduction

2 gRRM

SIM De

MIM

Constructing Manifold

Dimensionalit

gRRM

RCC

Using Manifold

8 Entropy Prod. Ana.

4 n-heptane/air complex dynamics

global RRM (gRRM)

The gRRM n_d -dimensional manifold is:

- The n_d -dimensional SIM +
- > The extension of SIM to the far from equilibrium states
- \implies The initial grid is important both for convergence and accuracy of extension
- \implies In this work the initial grid is found based on notation of Quasi Equilibrium Manifold (QEM)

1 Introduction

2 gRRM

SIM De

MIM

Constructing Manifold

Dimensionali

gRRM

RCC

Using Manifold

B Entropy Prod. Ana.

4 n-heptane/air complex dynamics

Initial Grid via QEM (CEM)

$$\begin{array}{ll} \min & G \\ \text{s.t.} & \mathbf{BN} = \boldsymbol{\xi} \end{array}$$

$$\mathbf{B} = [\mathbf{E} \ \mathbf{B}^d]$$
 and $\boldsymbol{\xi} = [\boldsymbol{\xi}^e \ \boldsymbol{\xi}^d]$

• $n_e \times n_s$ elemental constraints matrix, **E**

 $\mathbf{EN} = \xi^e$

 ξ^{e} is specified by the initial composition E_{ji} : number of atoms of element *j* in species *i*

• $n_d \times n_s$ constraints matrix \mathbf{B}^d

$$(\mathbf{B}^d)\mathbf{N} = \boldsymbol{\xi}^d$$

 ξ^d : slow parameters **B**^d: rows define the linear combination of **N** as the slow constraints 1 Introduction

2 gRRM SIM Def. MIM Constructing Man Dimensionality

gRRM

RCC

Using Manifold

3 Entropy Prod. Ana.

4 n-heptane/air complex dynamics

イロト イボト イヨト イヨト 二日

Manifold parametrization Ξ / Proper choose for extension

How to Choose a good set of constraints \mathbf{B}^d ?

- Rate-Controlled Constrained-Equilibrium method (RCCE)
- constraints for H₂/air combustion with n_s = 9 species and n_r = 21 elementary reactions*

**	H_2	N_2	Н	0	OH	O_2	H_2O	HO_2	H_2O_2
	1	1	1	1	1	1	1	1	1
ξ_2 =Active Valence		0	1	2	1	0	0	0	0
	0	0	0	1	1	0	1	0	0
1	1	1	1	1	1	1	1 1	1	
0	0	1	2	1	0	0	0 0		
0	0	0	1	1	0	1	0 0		
	e [1 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \end{bmatrix}$

*kirahgtol; &20042, 41 B. (2004): Kimbilst 9hebby Model., 8(2), 255-279.

1 Introduction

2 gRRM SIM Def. MIM Constructing Manifold Dimensionality gRRM RCCE Using Manifold

Entropy Prod. Ana.

4 n-heptane/air complex dynamics

gRRM for H_2/air combustion

 $n_s = 9$ Species, $T_0 = 1500 K$, P = 1 atm, $\phi = 1.0$

ξ_1 =Total Mole, ξ_2 =Active Valence Slight improvements in main species

□, fresh mixture; ★, equilibrium point; – detailed kinetics path, Colored surfaces, Manifolds

1 Introduction

um für Aerothermochemie und Verbrennungssysteme ochemistry and Combustion Systems Laboratory

イロト イヨト イヨト イヨト 三日

2 gRRM SIM Def. MIM Constructing Manifold Dimensionality gRRM RCCE Using Manifold

Endopy Frod. 7 ma

4 n-heptane/air complex dynamics

gRRM for H_2/air combustion

 $n_s = 9$ Species, $T_0 = 1500 K$, P = 1 atm, $\phi = 1.0$

ξ_1 =Total Mole, ξ_2 =Active Valence Small improvements in main radicals

□, fresh mixture; ★, equilibrium point; – detailed kinetics path, Colored surfaces, Manifolds

1 Introduction

um für Aerothermochemie und Verbrennungssysteme ochemistry and Combustion Systems Laboratory

> 2 gRRM SIM Def. MIM Constructing Manifold Dimensionality gRRM RCCE Using Manifold 2 Entropy, Dread

4 n-heptane/air complex dynamics

gRRM for H_2/air combustion

 $n_s = 9$ Species, $T_0 = 1500 K$, P = 1 atm, $\phi = 1.0$

Small improvements in main radicals

□, fresh mixture; ★, equilibrium point; – detailed kinetics path, Colored surfaces, Manifolds

1 Introduction

um für Aerothermochemie und Verbrennungssysteme ochemistry and Combustion Systems Laboratory

2 gRRM SIM Def. MIM Constructing Manifold Dimensionality gRRM RCCE Using Manifold

Entropy Prod. Ana.

4 n-heptane/air complex dynamics

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

gRRM for H_2/air combustion

 ξ_1 =Total Mole, ξ_2 =Active Valence Large improvements for low-concentration radicals

□, fresh mixture; ★, equilibrium point; – detailed kinetics path, Colored surfaces, Manifolds

1 Introduction

2 gRRM SIM Def. MIM Constructing Manifold Dimensionality gRRM RCCE Using Manifold 2 Entropy: Decd. A

4 n-heptane/air complex dynamics

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

H_2/air auto-ignition

Adiabatic, constant pressure reactor $T_0 = 1500 K, P = 1 atm, \phi = 1.0$ **2D** manifold results

1 Introduction

2 gRRM

SIM I

MIM

Constructing Manifold

sing Manifold

 $T_0 = 1500 \text{K}$

 $T_0=1000\mathrm{K}$

3 Entropy Prod. Ana.

4 n-heptane/air complex dynamics

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

H_2/air auto-ignition

Adiabatic, constant pressure reactor $T_0 = 1000 K, P = 1 atm, \phi = 1.0$ **2D** manifold results

1 Introduction

2 gRRM

SIM E

MIM

onstructing Manifold

sing Manifold

 $T_0 = 1500 {\rm K}$

 $T_0 = 1000 {\rm K}$

3 Entropy Prod. Ana.

4 n-heptane/air complex dynamics

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

H_2/air auto-ignition

Adiabatic, constant pressure reactor $T_0 = 1000 K, P = 1 atm, \phi = 1.0$ **3D** manifold results

1 Introduction

2 gRRI

SIM E

MIM

onstructing Manifold

sing Manifold

 $T_0 = 1500 \text{K}$

 $T_0 = 1000 {\rm K}$

3 Entropy Prod. Ana.

4 n-heptane/air complex dynamics

1 Introduction

2 gRRM

3 Entropy Prod. Ana. Entropy Production Skalatal Machanism Can

4 n-heptane/air complex dynamics

5 Conclusion

III. Entropy production analysis for mechanism reduction

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● のへぐ

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Entropy Production

1 Introduction

2 gRRM

3 Entropy Prod. Ana. Entropy Production Skeletal Mechanism Gen.

4 n-heptane/air complex dynamics

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Entropy Production

1 Introduction

2 gRRM

3 Entropy Prod. Ana. Entropy Production Skeletal Mechanism Gen.

4 n-heptane/air complex dynamics

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Entropy Production

1 Introduction

2 gRRM

3 Entropy Prod. Ana. Entropy Production Skeletal Mechanism Gen.

4 n-heptane/air complex dynamics

Entropy Production

$$\sum_{i=1}^{n_s} v_{ik}' N_i \rightleftharpoons \sum_{i=1}^{n_s} v_{ik}'' N_i, \quad k = 1, \cdots, n_r$$

$$q_k = q_{f_k} - q_{r_k} = k_{f_k} \prod_{i=1}^{n_s} [N_i]^{v'_{ik}} - k_{r_k} \prod_{i=1}^{n_s} [N_i]^{v''_{ik}}, \quad k = 1, \cdots, r$$

The entropy production per unit volume

$$\frac{1}{V}\frac{dS}{dt} = R_c \sum_{k=1}^{n_r} (q_{f_k} - q_{r_k}) ln\left(\frac{q_{f_k}}{q_{r_k}}\right)$$

The relative contribution of each reaction in total entropy production at time *t*

$$r_k(t) = \frac{R_c(q_{f_k} - q_{r_k})ln\left(\frac{q_{f_k}}{q_{r_k}}\right)}{\frac{1}{V}\frac{dS}{dt}}$$

Threshold for contribution

$$r_k(t) \geq \varepsilon\%$$

1 Introduction

2 gRRM

3 Entropy Prod. Ana. Entropy Production Skeletal Mechanism Gen.

4 n-heptane/air complex dynamics

Most-Contributing Reactions

n-heptane LLNL2 Mechanism $(n_s = 561, n_r = 2539)^*$ $T_0 = 650$ K, P = 1 atm, $\phi = 1$ $\varepsilon = 5\%$

LAV (Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

1 Introduction

2 gRRM

3 Entropy Prod. Ana. Entropy Production Skeletal Mechanism Gen.

4 n-heptane/air complex dynamics

Generate Skeletal Mechanism

Most-contributing reactions

1 Introduction

2 gRRM

3 Entropy Prod. Ana. Entropy Production Skeletal Mechanism Gen. nC₇H₁₆/air Ske. Mech. Validation of Ske. Mech.

n-heptane/air complex dynamics

Generate Skeletal Mechanism

Most-contributing reactions

Important Species

 nc_7h_{16} , o_2 , c_7h_{15} -1/2/3/4, ho_2 , oh, nc_7ket_{24} , nc_7ket_{35} , nc_7ket_{42} , ...

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

1 Introduction

2 gRRM

3 Entropy Prod. Ana. Entropy Production Skeletal Mechanism Gen. nC₇H₁₆/air Ske. Mech. Validation of Ske. Mech.

I n-heptane/air complex dynamics

Generate Skeletal Mechanism

Most-contributing reactions

Important Species

 $nc_7h_{16}, o_2, c_7h_{15}-1/2/3/4,$ $ho_2, oh, nc_7ket_{24}, nc_7ket_{35},$ nc_7ket_{42}, \cdots

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Skeletal Mechanism Generation

- Eliminate non-important species
- Keep all elementary reactions including important species

Introduction

2 gRRM

3 Entropy Prod. Ana. Entropy Production Skeletal Mechanism Gen. nC₇H₁₆/air Ske. Mech. Validation of Ske. Mech.

4 n-heptane/air complex dynamics

Skeletal Mechanism for *n*-heptane/air kinetics

- Detailed Mechanism (D561): $n_s = 561$, $n_r = 2539$
- Sampled points took from autoignition in adiabatic constant pressure reactor
 - ▶ $650 \le T_0 \le 1400 \text{ K}$
 - $1 \le P \le 20$ atm
 - $0.5 \le \phi \le 1.5$
- $\varepsilon = 0.2\% \longrightarrow n_s = 203, n_r = 879$ (R203)
- $\varepsilon = 0.6\% \longrightarrow n_s = 149, n_r = 669 \text{ (R149)}$

Kooshkbaghi, M., et al., (2014). Combust. Flame, 161(6), 1507-1515.

1 Introduction

2 gRRM

3 Entropy Prod. Ana. Entropy Production Skeletal Mechanism Gen. nC₇H₁₆/air Ske. Mech. Validation of Ske. Mech.

4 n-heptane/air complex dynamics

Validation : Ignition Delay

Kooshkbaghi, M., et al., (2014). Combust. Flame, 161(6), 1507-1515.

1 Introduction

2 gRRM

3 Entropy Prod. Ana Entropy Production Skeletal Mechanism Gen. nC₇H₁₆/air Ske. Mech. Validation of Ske. Mech.

1 n-heptane/air complex dynamics

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Stiffness

1 Introduction

2 gRRM

3 Entropy Prod. Ana Entropy Production Skeletal Mechanism Gen. nC₇H₁₆/air Ske. Mech. Validation of Ske. Mech.

4 n-heptane/air complex dynamics

Kooshkbaghi, M., et al., (2014). Combust. Flame, 161(6), 1507-1515.

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Validation : Single-Zone Engine Model

 $T_{inlet} = 650 \text{ K}, P_{inlet} = 5 \text{ atm}, \phi = 0.8 \text{ at} -40 \text{ }^{\circ}\text{ATDC}, \omega = 700 \text{ rpm}$

1 Introduction

2 gRRM

3 Entropy Prod. Ana Entropy Production Skeletal Mechanism Gen. nC₇H₁₆/air Ske. Mech. Validation of Ske. Mech.

4 n-heptane/air complex dynamics

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Validation : Laminar Premixed Flame

 $T_u = 650 \text{ K}, P = 1 \text{ atm}$

1 Introduction

2 gRRM

3 Entropy Prod. Ana Entropy Production Skeletal Mechanism Gen. nC₇H₁₆/air Ske. Mech. Validation of Ske. Mech.

4 n-heptane/air complex dynamics

IV. *n*-heptane/air complex dynamics

1 Introduction

2 gRRM

Entropy Prod. Ana.

4 n-heptane/air complex dynamics

PSR Setup Validation of Ske. Mech. 1P Cont. Multi-P Cont.

rothermochemie und Verbrennungssysteme hermochemistry and Combustion Systems Laboratory

 τ : Residence Time p: Reactor Pressure φ: Inlet Mixture T_0 : Inlet Temperature \dot{Q}_{loss} : Heat loss per unit volume

AUTO-07p: Continuation and Bifurcation Software for ODEs + CHEMKIN III: Chemical kinetics data

PSR Setup

Validation Of Skeletal Mechanism

Dependence of reactor temperature on residence time of adiabatic PSR $T_0 = 650 \text{ K}, \phi = 1.0$

D561 (solid lines) and R149 (open circles)

1 Introduction

2 gRRN

8 Entropy Prod. Ana.

4 n-heptane/air complex dynamics PSR Setup Validation of Ske. Mech. IP Cont.

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

One parameter continuation Reactor Temperature vs Residence Time

1 Introduction

2 gRRM

8 Entropy Prod. Ana.

4 n-heptane/air complex dynamics PSR Setup Validation of Ske. Mech. IP Cont. **T** vs φ T vs φ T vs Q_{Los} Multi-P Cont.

550

0.06 time [s]

Kooshkbaghi, M., et al. (2015). Combust. Flame.

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

1 Introduction

2 gRRM

3 Entropy Prod. Ana.

4 n-heptane/air complex dynamics PSR Setup Validation of Ske. Mech. IP Cont. T vs ϕ T vs ϕ T vs ϕ T vs ϕ D for T vs ϕ T vs ϕ T vs ϕ T vs ϕ

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

One parameter continuation Reactor Temperature vs Equivalence ratio

For fixed residence time, the change of reactor temperature respect to the inlet mixture composition.

1 Introduction 2 gRRM

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

One parameter continuation Reactor Temperature vs Equivalence ratio

For fixed residence time, the change of reactor temperature respect to the inlet mixture composition.

1 Introduction

2 gRRM

8 Entropy Prod. Ana

Multi-P Cont.

5 Conclusior

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

One parameter continuation

Reactor Temperature for non-adiabtic reactors

Dependence of reactor temperature on residence time for non-adiabatic PSR $p = 1 \text{ atm}, T_0 = 700 \text{ K}, \phi = 1 \text{ and } \dot{Q}_{loss} = 0.1 kJ/(s \times m^3)$

1 Introduction

2 gRRM

8 Entropy Prod. Ana.

4 n-heptane/air complex dynamics PSR Setup Validation of Ske. Mech.

1P Cont.

T vs ø

T vs Q_{lor}

Multi-P Con

5 Conclusion

◆□> ◆□> ◆三> ◆三> ・三> ・のへで

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Multi-parameter continuation Continuation in $(T_0 - \tau)$ parameters

1 Introduction

2 gRRM

8 Entropy Prod. Ana.

4 n-heptane/air complex dynamics PSR Setup Validation of Ske. Mech. IP Cont. Multi-P Cont.

5 Conclusion

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●
Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Multi-parameter continuation Continuation in $(T_0 - \tau - \phi)$ parameters

1.2 1.1 1 ϕ 0.9 0.8 0.7 $10^{-6} \ 10^{-5} \ 10^{-4} \ 10^{-3} \ 10^{-2} \ 10^{-1}$ 10^{0} 10^1

1 Introduction

2 gRRM

Entropy Prod. Ana.

4 n-heptane/air complex dynamics PSR Setup Validation of Ske. Mech. 1P Cont. Multi-P Cont.

5 Conclusion

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Summary

1 Introduction

2 gRRM

3 Entropy Prod. Ana.

4 n-heptane/air complex dynamics

5 Conclusion

Summary Directions for future work Publications Acknowledgments

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Directions for future work

Entropy Production Analysis

1 Introduction

2 gRRM

3 Entropy Prod. Ana.

4 n-heptane/air complex dynamics

5 Conclusion

ummary

Directions for future work

Directions for future work

• Entropy Production Analysis Direct Numerical Simulations using skeletal mechanisms CH₄/air premixed flame (p = 1 atm, $\phi = 0.9$, $T_0 = 300$ K, $\delta_f = \frac{T_f - T_0}{max^2 (dT_1)}$)

aboratorium für Aerothermochemie und Verbrennungssysteme erothermochemistry and Combustion Systems Laboratory

1 Introduction

2 gRRM

3 Entropy Prod. Ana.

4 n-heptane/air complex dynamics

5 Conclusion

Summary

Directions for future work

Publications

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

イロト イヨト イヨト イヨト 三日

Directions for future work

Entropy Production Analysis

Direct Numerical Simulations using skeletal mechanisms CH₄/air premixed flame (p = 1 atm, $\phi = 0.9$, $T_0 = 300$ K, $\delta_f = \frac{T_f - T_0}{max|\frac{dT}{dx}|}$)

1 Introduction

2 gRRM

3 Entropy Prod. Ana.

4 n-heptane/air complex dynamics

5 Conclusion

ummary

Directions for future work

Directions for future work

Entropy Production Analysis

Direct Numerical Simulations using skeletal mechanisms

CH₄/air premixed flame (p = 1 atm, $\phi = 0.9$, $T_0 = 300$ K, $\delta_f = \frac{T_f - T_0}{max|\frac{dT}{dt}|}$)

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

1 Introduction

2 gRRM

3 Entropy Prod. Ana.

4 n-heptane/air complex dynamics

5 Conclusion

ummary

Directions for future work

ublications

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Publications

Journal Publications

- Kooshkbaghi, M., Frouzakis, C. E., Chiavazzo, E., Boulouchos, K., & Karlin, I. V. (2014). The global relaxation redistribution method for reduction of combustion kinetics. *J. Chem. Phys.* 141(4), 044102.
- Kooshkbaghi, M., Frouzakis, C. E., Boulouchos, K., & Karlin, I. V. (2014). Entropy production analysis for mechanism reduction. *Combust. Flame*, 161(6), 1507-1515.
- Karlin, I. V., Chikatamarla, S. S., & Kooshkbaghi, M. (2014). Non-perturbative hydrodynamic limits: A case study. *Physica A*, 403, 189-194.
- Kooshkbaghi, M., Frouzakis, C. E., Boulouchos, K., & Karlin, I. V. (2015). n-Heptane/air combustion in perfectly stirred reactors: Dynamics, bifurcations and dominant reactions at critical conditions. *Combust. Flame.*
- 5. Kooshkbaghi, M., Frouzakis, C. E., Boulouchos, K., & Karlin, I. V. (2015).

Spectral Quasi Equilibrium Manifold for Chemical Kinetics. In preparation for

J. Chem. Phys.

Conferences

- Kooshkbaghi, M., Frouzakis, C. E., Chiavazzo, E., Karlin, I. V., & Boulouchos, K. (2013). IWMRRF, San Francisco, California, USA.
- Kooshkbaghi, M., Boulouchos, K., Frouzakis, C. E., Karlin, I. V., & Chiavazzo, E. (2013). IEA, 36th TLM, Stavanger, Norway.

1 Introduction

2 gRRM

3 Entropy Prod. Ana.

4 n-heptane/air complex dynamics

5 Conclusion Summary Directions for future work Publications

Laboratorium für Aerothermochemie und Verbrennungssysteme Aerothermochemistry and Combustion Systems Laboratory

Acknowledgments

- Prof. Konstantinos Boulouchos
- Dr. Christos Frouzakis
- Prof. Ilya Karlin
- Prof. Yannis Kevrekidis
- My friends and colleagues at LAV
- Swiss National Science Foundation
- My family

1 Introduction

2 gRRM

B Entropy Prod. Ana.

4 n-heptane/air complex dynamics

5 Conclusion

Summary Directions for future work Publications