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Large scale dynamical systems (e.g. many nonlinear coupled differential equations) can 
often be summarized in terms of only a few state variables (a few equations), a trait 
that reduces complexity and facilitates exploration of behavioral aspects of otherwise 
intractable models. High model dimensionality and complexity makes symbolic, pen–
and–paper model reduction tedious and impractical, a difficulty addressed by recently 
developed frameworks that computerize reduction. Symbolic work has the benefit, 
however, of identifying both reduced state variables and parameter combinations that 
matter most (effective parameters, “inputs”); whereas current computational reduction 
schemes leave the parameter reduction aspect mostly unaddressed. As the interest in 
mapping out and optimizing complex input–output relations keeps growing, it becomes 
clear that combating the curse of dimensionality also requires efficient schemes for input 
space exploration and reduction. Here, we explore systematic, data-driven parameter 
reduction by means of effective parameter identification, starting from current nonlinear 
manifold-learning techniques enabling state space reduction. Our approach aspires to 
extend the data-driven determination of effective state variables with the data-driven 
discovery of effective model parameters, and thus to accelerate the exploration of high-
dimensional parameter spaces associated with complex models.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Our motivation lies in the work of Sethna and coworkers on model sloppiness [1], as well as in related ideas and studies 
on parameter non-identifiability [2], active subspaces [3] and more. These authors investigate a widespread phenomenon, in 
which large ranges of model parameter values (inputs) produce nearly constant model predictions (outputs). This behavior, 
termed sloppiness and observed in complex dynamic models over a wide range of fields, has been exploited to derive simpli-
fied models [4,5]. Additional motivation comes from our interest in model scaling and nondimensionalization, time-honored 
ways to reduce complexity but often more closely resembling an art than definite algorithms.
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Fig. 1. Exact and learned (global) parameter space foliations for the model fε(p1, p2) = (p1 p2 + 2ε(p1 − p2), ln(p1 p2), (p1 p2)2). The combination peff =
p1 p2 is an effective parameter for the unperturbed (ε = 0) model, since f0 = const. whenever p1 p2 = const. (a) Level sets of the cost function δ(p) =
‖fε(p) − f∗‖ for the unperturbed (main) and perturbed (inset) model and for data f∗ = (1, 0, 1) corresponding to (p1, p2) = (1, 1). Level sets of peff can 
be learned by data fitting: feeding various initializations (triangles) to a gradient descent algorithm for the unperturbed problem yields, approximately, the 
hyperbola peff = 1 (circles; colored by initialization). This behavior persists qualitatively for ε = 0.2 despite the existence of a unique minimizer p∗ , because 
δ(p) remains within tolerance over extended almost neutral sets around p∗ that approximately trace the level sets of peff . (b) Learning peff by applying 
DMAPS, with an output-only-informed metric (see the SI), to input–output data of the unperturbed model. For ε = 0, points on any level curve of peff are 
indistinguishable for this metric, as f0 maps them to the same output. DMAPS, applied to the depicted oval point cloud, recovers those level curves as level 
sets of the single leading nontrivial DMAPS eigenvector φ1. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

One extreme case of sloppiness, termed parameter non-identifiability, arises when model predictions depend solely on a 
reduced number of parameter combinations. In such a setting, the parameter space is foliated by lower-dimensional sets 
along which those combinations, and hence also the resulting observables (the outputs), retain their values. In such cir-
cumstances, it is neither possible nor desirable to infer parameter values from observations; the parameters are said to be 
non-identifiable. One should, instead, re-parameterize the model with a reduced number of identifiable, effective parameters
and, if desired, use those to explore the model input–output structure. Such identifiability analysis decomposes parameter 
space globally on the basis of model response, yet its symbolic nature can make it cumbersome and highly sensitive to small 
perturbations: even a minute dependence on certain parameter combinations can destroy the invariance of the decompo-
sition. (Computational) sensitivity analysis is more robust, as it weighs the degree by which parameter combinations affect 
response; however, it is inherently not global in parameter space, as it uses a (local) linearization. We attempt to reconcile 
and fuse these two perspectives into an entirely data-driven, nonlinear framework for the identification of global effective 
parameters.

To fix ideas, we consider the caricature model of Fig. 1, given as an explicit vector function of two parameters, 
f0(p1, p2) = (p1 p2, ln(p1 p2), (p1 p2)

2). Given access to input–output information (black-box function evaluation) but no 
formulas, one might not even suspect that only the single parameter combination peff = p1 p2 matters. Fitting the model 
to data f∗ = (1, 0, 1) in the absence of such information, one would find an entire curve in parameter space that fits the 
observations. A data fitting algorithm based only on function evaluations could be “confused” by such behavior in declaring 
convergence. As seen in Fig. 1(a), different initial conditions fed to an optimizer with a practical fitting tolerance δ ≈ 10−3

(see figure caption for details) converge to many, widely different results tracing a level curve of peff . The subset of good 
fits is effectively 1-D; more importantly, and moving beyond the fit to this particular data, the entire parameter space is 
foliated by such 1-D curves (neutral sets), each composed of points indistinguishable from the model output perspective. 
Parameter non-identifiability is therefore a structural feature of the model, not an artifact of optimization. The appropriate, 
intrinsic way to describe parameter space for this problem is through the effective parameter peff and its level sets. Con-
sider now the inset of Fig. 1(a), corresponding to the perturbed model fε(p1, p2) = f0(p1, p2) + 2ε(p1 − p2, 0, 0) and fit to 
the same data. Here, the parameters are identifiable and the minimizer (p1, p2) unique: a perfect fit exists. However, the 
foliation observed for ε = 0 is loosely remembered in the shape of the residual level curves, and the optimizer would be 
comparably “confused” in practice. It is such model features that provided one of the original motivations in the work of 
Sethna and coworkers; in their terminology, this model is sloppy. The presence of lower-dimensional, almost neutral pa-
rameter sets (“echoed” in the elongated closed curves in the inset) increases disproportionately the importance of certain 
parameter combinations and reduces accordingly the number of independent, effective system parameters.

Our goal is to extract a useful intrinsic parameterization of model parameter space (input space) solely from input–output 
data. As we shall see, this parameterization may vary across input space regimes and, in the context of ODEs, we will 
associate that variation with the classical notions of regular and singular perturbations using explicit examples. For the 
time being, a pertinent question concerns the purely data-driven identification of the sloppy structure in Fig. 1. One an-
swer is given by the manifold-learning technique we choose to work with in this paper: diffusion maps (DMAPS; see SI 
and e.g. [6]). If a given dataset in a high-dimensional, ambient Euclidean space lies on a lower-dimensional manifold, then 
the DMAPS objective is to parameterize it in a manner reflecting the intrinsic geometry (and thus also dimension) of this 
underlying manifold. In our case, we work with the space of input–output combinations, where each data point consists of 
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parameter values and the resulting observations. DMAPS turns the dataset into a weighted graph and models a diffusion 
process (random walk) on it. The graph weights determine the transition probabilities between points and depend solely 
on an application-driven understanding of data closeness or similarity. Typically, DMAPS base this similarity measure on the 
Euclidean distance in the ambient space; yet, for our applications in most of this paper, this similarity will be informed 
solely by output observations. The dataset is parameterized, finally, by eigenvectors of the corresponding Markov matrix, re-
lating in turn to a (discretized) eigenproblem for the Laplace–Beltrami operator on the underlying manifold [7]; one may 
perceive here an analogy with Singular Value Decomposition in classical Principal Component Analysis (PCA) [8]. In our 
input–output setting, DMAPS coordinatizes the low-dimensional manifold hosting the dataset. Both the effective parameters 
and the observables are now functions on this low-dimensional manifold, therefore both the input space and (what in slop-
piness terminology is called) the model manifold are jointly described in terms of this intrinsic, common parameterization 
based on leading diffusion modes.

As a concrete example, consider randomly sampling the input space of our model above, i.e. a (p1, p2)-parallelogram 
[0, a] × [0, b] as in Fig. 1, and using as our pairwise similarity measure the Euclidean distance between points in this input 
space. Applying DMAPS to that dataset recovers the sampled parallelogram, i.e. DMAPS correctly identifies the dimension of 
the underlying manifold and coordinatizes it using two diffusion eigenmodes. For this simple shape, the leading (nontrivial, 
independent) eigenmodes assume the form φ1(x, y) = cos(π p1/a) and φ j(x, y) = cos(π p2/b), where the index j of the 
first eigenfunction independent of φ1 depends on a/b. This parameterization maps the (p1, p2)-rectangle bijectively to the 
(φ1, φ2)-domain [−1, 1] × [−1, 1], so DMAPS recovers the original parameterization up to an invertible nonlinear transfor-
mation. Our main idea here is to retain sampling of the input (parameter) space but use, instead, a similarity measure (also) 
informed by the output, i.e. by the model response at the sampled parameter points. As a first but meaningful attempt for the 
unperturbed example above, we work with the output-only similarity measure ‖f0(p) − f0(p′)‖ between parameter settings 
p and p′ .1

In the context of our example, the output-only similarity measure ensures that only parameter values lying on distinct 
level sets of peff are seen as distinct. Because of this, our chosen similarity measure immediately reveals the effective param-
eter space to be 1-D, as in Fig. 1(b). Coloring the points by the first DMAPS mode φ1(p1, p2) confirms that this data-driven 
procedure “discovers” sloppiness. Data points having different parameter settings (different “genotypes”) but the same out-
put (same “phenotypes”) are found as level sets of the first nontrivial DMAPS eigenfunction φ1 on the dataset, obtained in 
turn by our black-box simulator and without recourse to the explicit input–output relation f0. Additionally, the decompo-
sition of parameter space into “meaningful” and “neutral” parameter combinations can be performed using a small local 
sample, possibly resulting from a short local search – e.g. a few gradient descent steps, or local brief simulated annealing 
runs. This type of local decomposition can prove valuable to the optimization algorithm, as it reveals local directions that 
are fruitful to explore and others (along neutral sets) that preserve model predictions (goodness of fit). These latter ones 
may, in turn, become useful later in multi-objective optimization, where one optimizes additional objectives along level sets 
discovered during optimization of the original one [10]. It is precisely the preimages, in parameter space, of the level sets of 
the first meaningful DMAPS coordinate φ1 that correspond to the neutral parameter foliation.

The remainder of the paper is structured as follows: In Section 2, we use a simple, linear, 2-D, singularly perturbed 
dynamical system to bring forth the components of our data-driven framework, while retaining the connection with slop-
piness terminology. Readers unfamiliar with DMAPS may want to start with the brief relevant material in the SI. The 
main result we illustrate in that section is the connection between singular perturbation dynamic phenomenology and 
data-driven detection of (what one might consider as) loss of observed dimensionality. This occurs here simultaneously in 
both state (model output) and parameter (model input) space. We also explore the transition region between unperturbed 
and singularly perturbed regimes and, finally, contrast “data-driven singular perturbation detection” with “data-driven reg-
ular perturbation detection” through another simple–yet informative–caricature. In Section 3, we move beyond caricatures 
to other prototypes. In Section 3.1, we explore a simple kinetic example with two sloppy and one meaningful nonlinear 
parameter combination, readily discovered by DMAPS. This brings up the important issue of physical understanding: the 
correspondence between input combinations uncovered through data mining and physically meaningful parameters. That 
model also enables comparison of analytical and data-driven approaches (QSSA, [11]). Section 3.2 uses the time-honored, 
textbook example of Michaelis–Menten–Henri enzyme kinetics to show something we found surprising: how data-driven 
computations may discover parameter scalings (in this case, an alternative nondimensionalization) that better characterize 
the boundaries of the singular perturbation regime. Section 3 concludes with the discussion of an important subject, namely 
non-invertible input–output relations. We elucidate that issue using a classical chemical reaction engineering literature ex-
ample, connecting the Thiele modulus (parameter) and the effectiveness factor (model output) for transport and reaction in 
a catalyst pellet. An important connection between the dynamics of our measurement process and our data-mining frame-
work arises naturally in this context. In Section 4 we summarize, and also bring up analogies with and differences from 
the active subspace literature: the “effective parameters” discovered by DMAPS are nonlinear generalizations of linear ac-
tive subspaces. We conclude with a discussion of shortcomings, as well as possible extensions and enhancements of our 
approach.

1 We warn the reader that output-only similarity measures may be inappropriate for general input–output relations (e.g. [9]), such as bifurcation dia-
grams, in which several behaviors may coexist for a single input. We illustrate this further below, using a system with inputs/outputs that do not maintain 
a one–to–one correspondence.
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Fig. 2. (a) Phase portrait of (2) for a range of initial conditions (x0, y0) and two representative ε-values. Solid points mark states at the monitoring times 
(t1, t2, t3) = (0.5, 1, 1.5) for trajectories starting at x0 = −1. For ε = 0.01, the points lie close to the slow subspace and appear y0-independent; for ε = 0.3, 
instead, they lie off it and vary appreciably with y0. (b) A sample of the model input space, overlaid with distinct rectangular patches. (c) Mapping of 
the input sample of panel (b) to the 3-D output space. The images of the random sample outline part of the model manifold, while those of the patches 
show the dimensionality reduction due to the singularly perturbed structure of the model. (d) Mapping of the input sample in DMAPS coordinates. The 
transformations from (b) to (c–d) are discussed in the text.

2. Singularly/regularly perturbed prototypes

To fix ideas and definitions, we start with a dynamical model

ẋ(t|p) = v(x|p) and x(t0|p) = x0(p), where ẋ ≡ dx

dt
. (1)

The vector x(t|p) ∈ Rd collects the state variables at time t that are observed for parameter settings p ∈ RM , initialization 
x0(p) at t0 and vectorfield v(·|p) : Rd → Rd . Equation (1) determines the system state x(t|p) for all times t > t0, but the 
model output or response consists only of partial observations of that time course; e.g. certain state variables at specific 
times. Observing the system means fixing p and initial conditions (inputs) and recording a number N ≥ M of scalar outputs 
into f(p) ∈RN . Each input yields a well-defined output f(p); as the former moves in parameter space, the latter traces out 
a (generically M-dimensional) model manifold M. Our data points on this manifold are input–output combinations (p, f(p)) ∈
RM+N and not merely the outputs; see SI. In the interest of visualization, whenever the map p 
→ f(p) is injective below, 
we only plot the projection of the model manifold on the output space RN . To illustrate these definitions, we consider a 
singularly perturbed caricature chosen for its amenability to analysis,

ẋ = 2 − x − y,

ε ẏ = x − y,
with

x(0) = x0,

y(0) = y0.
(2)

We also fix x0 and distinct times t1, t2, t3 (see caption of Fig. 2), view both p = (ε, y0) as inputs and monitor y; con-
cisely, f(p) = [y(t1|p) , y(t2|p) , y(t3|p)]. The final ingredient is a metric that provides the DMAPS kernel with a measure 
of closeness between different input–output combinations. For simplicity, we discuss here the output-only Euclidean metric 
‖f(p) − f(p′)‖ and defer a discussion of other options to a later section. The phase portraits corresponding to two distinct 
ε-values are plotted in Fig. 2(a). For small enough ε, all points on the vertical line segment x = x0 (fast fiber) contract 
quickly to effectively the same base-point on a 1-D invariant subspace (slow subspace) before our monitoring even begins. 
Memory of y0 and of the boundary layer (inner solution) is practically lost and, in the timescale of our monitoring protocol, 
trajectories with bounded y0 shadow the evolution of that base-point and yield, with O(ε) accuracy, the same output mir-
roring the leading order slow dynamics (outer solution). As ε increases, the output begins to vary appreciably because the 
fast contraction rate decelerates and the slow invariant subspace is perturbed. However, observations still lie practically on 
the slow subspace and are thus insensitive to y0. For even larger ε, the disparity in contraction rates is relatively mild and 
different inputs yield visibly different trajectories; the output is jointly affected by ε and y0.
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Fig. 3. Application of DMAPS to the singularly perturbed model (2) with an output-only-informed metric. (a, c) Input (parameter) space, coordinatized by 
two independent eigenmodes φ1 and φ9; (b, d) the diffusion coordinate domain (DMAPS space), coordinatized by ε and y0. All parameter settings in the 
singularly perturbed regime (ε � 0.03) yield effectively the same model response, (φ1, φ9) ≈ (−0.028, 0) in diffusion coordinates, as seen by the broad 
monochromatic swaths at small ε-values in (a, c). Intermediate ε-values (0.03 � ε � 0.2) yield an effectively 1-D output: φ9 becomes slaved to φ1, see 
(b, d). Even larger ε-values yield a fully 2-D model manifold, captured by the independent color variation in all panels. The progressive decline of effective 
domain dimensionality is evident, as ε decreases, as is the loss of memory of the initial condition y0, starting already in the 1-D regime.

This situation is evident in Fig. 2(b–c), showing a randomly sampled set of inputs p(1), . . . , p(L) and their simulated 
outputs f(p(1)), . . . , f(p(L)); the colored patches are meant as visual aids. The yellow patch outside the singularly perturbed 
regime maps into a 2-D region of the model manifold, whereas intermediate ones (blue, green) are gradually stretched into 
1-D segments; as ε ↓ 0, or log(ε) → −∞, the effective model manifold dimensionality cascades from two to one to zero. 
In the 1-D part of the model manifold and over the scales we consider, ε informs model output much more strongly than 
y0. As ε ↓ 0, the output trajectory approaches a well-defined limit – the leading order outer solution – and all inputs are 
mapped to within O(ε) of a parameter-free output: the model manifold “tip.” This is evident in the red patch deep inside 
the singularly perturbed regime, demonstrating the joint reduction in state and in parameter space dimensionality for the 
scales of interest: first, the evolution law involves a single state variable, with the other slaved to it algebraically; and second, 
all small enough ε-values produce at leading order the same, practically y0-independent output.

To glean the information above by data mining, we apply DMAPS (see [12] for the code) with an output-only informed 
kernel to the dataset and obtain the re-coordinatization (p(�), f(p(�))) 
→ (φ

(�)
1 , φ(�)

9 ). Here, φ1, φ9 ∈ RL are independent 
eigenvectors of the DMAPS kernel, i.e. discretizations (on the dataset) of eigenfunctions of the Laplace–Beltrami operator 
defined on the model manifold M. As such, they describe diffusive eigenmodes whose level sets endow M with an in-
trinsic, nonlinear coordinate system. The domain of that coordinate system (DMAPS space) is shown in Fig. 2(d). Here also, 
the stretching factor increases and the dimensionality of the mapped patches cascades, as we progress into the singularly 
perturbed regime. The preimage, in parameter space, of that coordinate system is shown in Fig. 3(a, c), allowing us to define 
distances between inputs in terms of the outputs they generate. Fig. 3(b, d) portrays complementary images, namely the co-
ordinatization of DMAPS space in terms of the inputs ε and y0. Finally, Fig. 4(a–b) and Fig. 4(c–d) show the model manifold 
colored by the inputs as well as by the diffusion eigenmodes.

These figures relate input, output and DMAPS domains to model dynamics and suffice to reproduce our earlier obser-
vations on model output. In the 2-D part of the DMAPS domain and of the model manifold, distinct points on the latter 
correspond to distinct diffusion coordinates and distinct inputs ε and y0; see Fig. 3. As ε decreases, however, the depen-
dence on y0 becomes attenuated and the output controlled by ε alone. In the terminology introduced earlier, y0 becomes 
sloppy and both the DMAPS domain and the model manifold transition to a 1-D regime parameterized by ε; the y0-values 
span an ever-diminishing width. In this regime, the level sets of the eigenmodes visibly align with each other, both in input 
space and on the model manifold; see Fig. 3(a, c) and Fig. 4(c–d). Finally, as ε ↓ 0, all parameter settings converge to the 
same (φ1, φ9)-value, as the output converges to the “tip” of the model manifold and of the DMAPS domain.

In summary, our output-informed application of DMAPS parameterizes the input–output combinations comprising the 
dataset in a manner indicative of how model inputs dictate model outputs. The parameterization applies primarily to the 
output component of the dataset, but it can be pulled back to yield a simultaneous, consistent re-parameterization of the 
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Fig. 4. (a–b) Model manifold colored by the model parameters (inputs). For large ε, the model manifold is evidently coordinatized by (ε, y0). As ε decreases, 
the system loses memory of the initialization y0 and model responses for different y0 bundle together. In the singularly perturbed regime (deep blue in 
panel (a)), all memory of y0 has been lost. (c–d) Model manifold colored by leading independent DMAPS coordinates. Evidently, φ1 tracks ε well, with 
the regime ε  1 corresponding to φ1 ≈ −0.028. The coordinate φ9 is transverse to φ1 in the 2-D regime but, as ε decreases, becomes slaved to it and 
dimension reduction occurs.

Fig. 5. Model manifold and parameter space for the regularly perturbed system (3) with inputs (ε, x0) and monitoring times (t1, t2, t3) = (0.25, 1.0, 1.75). 
(a) Model manifold colored by ε and its projections on the coordinate planes. For large ε, the system is fully 2-D (orange/red region). As ε decreases, the 
model response becomes increasingly determined by x0 alone. Contrary to Fig. 3, where the ε  1 regime was mapped to a limiting point, the limiting 
submanifold here is 1-D (blue straight line). (b) Parameter space colored by the DMAPS coordinate φ1. DMAPS visibly captures the importance of x0, as 
ε ↓ 0: the parameterization varies in the x0 direction and remains unchanged along lines of constant x0.

input component. This showcases the main contribution in this paper: a way to intuit system properties by parameterizing 
the input–output relation through the geometry of the manifold that collects model inputs and model outputs, as encoded 
in eigenfunctions of the Laplace–Beltrami operator.

2.1. Regularly perturbed prototype

In the singularly perturbed prototype discussed above, we noted the simultaneous loss of output sensitivity to (certain) 
initial conditions and parameters, as ε ↓ 0. Additionally, we demonstrated how this system behavior can be intuited by 
mining input–output data with the help of DMAPS. Fig. 5(b) shows the result of applying the same methodology to the 
regularly perturbed example
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ẋ = −x + εx3, with x(0) = x0. (3)

Here also, we view p = (ε, x0) as parameters and monitor the system state x(t|p) at distinct times.
Similarly to the singularly perturbed model, the model output approaches a well-defined, limiting response in the asymp-

totic regime ε ↓ 0. Yet, in this case that response remains strongly dependent on x0: distinct initial conditions yield distinct 
outputs even for ε ↓ 0, as seen plainly in Fig. 5. In panel (a), the limiting edge ε = 0.001 is seen to outline a 1-D boundary 
of the full 2-D model manifold, instead of a point as was the case for the singularly perturbed model. That same edge is 
seen to be parameterized by φ1, in panel (b), rather than correspond to a single φ1-value. This result is clearly underpinned 
by the uniform convergence of the trajectory x(t|p) to x(t|0, x0) = x0e−t , which is ε-free but depends strongly on x0 and 
defines the aforementioned 1-D model manifold boundary. This regular perturbation behavior, and specifically the lack of 
dimensionality reduction in terms of initial conditions, generalizes directly to higher state and parameter space dimensions.

3. Beyond caricatures

3.1. The ABC model

Having examined simple singularly and regularly perturbed models, we turn our attention to the data-driven detection of 
an effective parameter in a paradigmatic chemical reaction network. We specifically consider the three-species, analytically 
tractable system (SI)

A
k1−−⇀↽−−
k−1

B
k2−→ C, initialized with A0 = 1, B0 = C0 = 0. (4)

The Quasi-Steady-State Approximation (QSSA; [13, Ch. 5]) for mechanism (4) reads

C(t|p) = 1 − e−kQSSA
eff t, where kQSSA

eff = k1k2

(k−1 + k2)
, (5)

and is valid for k1  k2 [13]. A detailed analysis, however (see SI), establishes that the approximate solution is actually

C(t|p) = 1 − e−kefft, where keff = k1k2

k−1 + k1 + k2
. (6)

To detect this dimensionality reduction and “discover” keff in a data-driven manner, we view the kinetic constants as inputs, 
p = (k1, k−1, k2), and monitor product concentration at preset times, f(p) = [C(t1|p), . . . , C(t5|p)]. Then, we fix a model 
output in the regime of applicability of (6) and mine sampled parameter settings with outputs “similar” to that reference 
response. Here, we used as reference the output corresponding to parameter settings p∗ = (10−1, 103, 103) and measured 
similarity in the Euclidean sense, retaining sampled points p satisfying ‖f(p) − f(p∗)‖ < δ for some δ > 0. Fig. 6(b–f) ex-
amines two nested such “good datasets”, one of almost perfect fits (δ = 10−3; Fig. 6(b–c)) and another of less good fits 
(δ = 10−1; Fig. 6(d)). Data-mining the “zero residual level set” in 3-D parameter space with an input-only informed DMAP 
metric confirms its 2-D nature. The data-driven coordinatization of the full input space by output-only φ1 and input-only 
(ψ1, ψ2) decomposes the space in a manner tuned to model output. A related data-processing of good fits using linear 
PCA was performed, e.g., as in [14] for a neuron model; clearly, linear PCA here would give the erroneous impression of 
full-dimensionality due to manifold curvature.

This result is valid in the input regime k1k2  (k1 +k−1 +k2)
2, that extends the QSSA, and keff is the effective parameter 

(approximately) determining the output. This expression represents a reduction of input space from 3-D to 1-D; the foliation 
of parameter space by the (nonlinear) level sets of keff is shown schematically in Fig. 6(a). The set of parameter settings 
with outputs within δ = 10−1 of the reference output is clearly 3-D and visibly composed of level sets of keff spanning an 
appreciable keff range. An application of DMAPS with the Euclidean, output-only-informed similarity measure reveals the 
existence of a single effective parameter without recourse to an analytic expression. Indeed, the DMAPS coordinate φ1 traces 
keff accurately, see Fig. 6(d, f). Note, for comparison, that kQSSA

eff is a worse predictor of model output, see Fig. 6(e). It follows 
that level sets of φ1 in parameter space give (almost) neutral sets, i.e. level sets of keff whose points yield indistinguishable 
outputs. An algorithm to explore parameter space effectively would march along φ1, whereas sampling parameter inputs 
at constant φ1 would allow one to map out level sets of keff . This can be of particular utility in multi-objective optimiza-
tion [10], where a second objective can be optimized on the set keff = keff(p∗) optimally fitting the data f∗ = f(p∗).

Fig. 6(e, f) raises the crucial issue of physical interpretation of the effective parameters discovered through data mining. 
Although such data-driven parameters are not expected to be physically meaningful, the user can post-process their discovery
by formulating and testing hypotheses on whether they are one-to-one with (i.e., encode the same information as) physically 
meaningful parameters.
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Fig. 6. Data-driven detection and characterization of the effective parameter keff for (4) using DMAPS. All datasets were obtained by presetting the reference 
output f∗ = f(p∗) with p∗ = (10−1, 103, 103) and a specific tolerance δ > 0 and, then, sampling log-uniformly a rectangular domain in input space to retain 
inputs satisfying ‖f(p) − f∗‖ < δ. (a) Illustration of level sets of keff in parameter space (k1, k−1, k2). Equation 6 dictates that points on each same colored 
foil exhibit nearly identical model responses. (b–c) Dataset for δ = 0.001; this is practically the 2-D surface keff(p) = keff(p∗) of (almost) perfect fits. An 
application of input-only DMAPS on this set reveals its 2-D nature and coordinatizes it through the eigenfunctions ψ1, ψ2. (d) Dataset for δ = 0.1, colored 
by the first output-only DMAPS eigenfunction φ1. DMAPS clearly discovers the effective parameter, as φ1 remains effectively constant on level sets of keff . 
This striking one-to-one relation is evident in panel (f), in terms of the (φ1, keff)-coordinates. The same dataset plotted in (φ1, kQSSA

eff )-coordinates (panel e) 
is, by contrast, visibly noisier.

3.2. Michaelis–Menten–Henri (MMH)

Continuing the development of a data-driven framework to identify effective parameters, we now treat a benchmark 
for model reduction methods. The MMH system [15,16] describes conversion of a substrate S into a product P through 
mediation of an enzyme E and formation of an intermediate complex C,

S + E
k1−−⇀↽−−
k−1

C
k2−→ P + E.

Under conditions often encountered in practice, the first reaction step reaches quickly an (approximate) chemical equilibrium 
and becomes rate-limiting. Product sequestration proceeds on a much slower timescale, during which the first reaction 
approximately maintains its quasi-steady state.

In that regime, simultaneous state and parameter space reduction is possible, as system evolution is described by a 
single ODE involving a subset of the problem parameters. There have been several, increasingly elaborate estimates of the 
parametric regime where QSSA applies, which were underpinned by different system nondimensionalizations. The first key 
estimate was that of [17], where the authors identified that regime as E T  ST involving the (conserved) total amounts of 
enzyme, ET = E + C , and substrate, ST = S + C + P . In that regime, nearly all enzyme molecules become quickly bound to 
substrate and the complex saturates. The authors of [18] brought the kinetic constants into play and extended the regime 
to ET  ST + K M , where K M = (k−1 + k2)/k1 is the so-called Michaelis–Menten constant. This asymptotic regime extends 
the one of [17] by including the case where the complex dissociates much faster than it forms.

Our goal in this section is twofold: first, to identify the effective parameter(s) informing system evolution in the asymp-
totic regime; and second, to show how the extended parametric region of [18] is captured in a data-driven manner by our 
methodology. To accomplish this in a completely automated way would necessitate using a black-box simulator for (a sub-
set of) the dimensional state variables S, E, C, P evolving in dimensional time T . This, in turn, would necessitate a candid 
discussion on tuning of monitoring times to capture the slow dynamics and how that relates to experimental/simulation 
data. We circumvent this issue here for brevity and focus, instead, on the equivalent, non-dimensional version in [18]. In 
that version, T , S, C, E, P have been rescaled into dimensionless variables t, s, e, c, p; additionally, e, p have been eliminated 
using the enzyme and substrate conservation laws. The result is the 2-D ODE system
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Fig. 7. (a) Phase portrait of the rescaled MMH model (7) with σ = κ = 1. The plotted trajectories start at (1, 0.2) and correspond to various ε-values, to 
illustrate the rate of attraction to the slow manifold (blue) and subsequent convergence to the origin. (b–d) Parameterization of the facets σ = 1, ε = 0.1
and κ = 10 of the (ε, σ , κ)-space (input space) by the leading (output-only) DMAPS eigenvector φ1. Evidently, κ is sloppy: the output is insensitive to it 
over several orders of magnitude. As ε ↓ 0, the system enters an asymptotic regime whose slow, reduced dynamics is strongly informed solely by σ .

ṡ = (κ + 1)
[−(1 + σ)s + σ cs + κ(κ + 1)−1c

]
,

εċ = (κ + 1) [ (1 + σ)s − σ cs − c] .
(7)

The composite parameters here are ε = ET /(ST + K M), σ = ST /K M and κ = k−1/k2, and they may in principle assume 
any positive value. The initial conditions (s0, c0) are arbitrary, and e, p can be recovered from the rescaled conservation 
laws e + σ c/(σ + 1) = 1 and s + εc + p = 1. The system is expressed in slow time, so that quasi-steady state is achieved 
over an O(ε) time and product sequestration occurs over an O(1) timescale. In this reformulation, the asymptotic regime 
where QSSA applies is ε  1, according to [18], and εh = (1 + 1/σ ) ε  1 according to [17]; the former plainly extends the 
latter. Initially, we select as our observable the rescaled complex concentration at distinct times (t1, t2, t3) = (0.5, 1, 1.5), so 
f(p) = [c(t1|p), c(t2|p), c(t3|p)]T. Our parameter set is the triplet p = (ε, σ , κ), with (s0, c0) = (1, 0) fixed as in the original 
experimental setting [16].

Fig. 7(b–d) demonstrates that the model response is unaffected by κ and strongly affected by σ , with the limit ε ↓ 0
corresponding to an asymptotic regime. Further, Fig. 7(d) makes it plain that the system evolution in that regime is con-
trolled by σ . This is in stark contrast to the parameter-free reduced dynamics of caricature (2) and agrees with theory, 
which predicts that the evolution of p in O(1) timescales is dictated by the leading order problem [18] (see also SI).

p = 1 − s − εc, subject to ṡ = −c = −(1 + 1/σ )
s

s + 1/σ
. (8)

On the basis of these results, we conclude that the model manifold is effectively 2-D and not 3-D as one might initially 
surmise, with the asymptotic regime ε ↓ 0 corresponding to a curve parameterized only by σ . As a corollary, the model 
manifold dimensionality transitions from two to one in that regime, without being further reduced to zero. This is evident 
in Fig. 8(b), showing (part of) the model manifold for the setup above.

We next turn to a data-driven characterization of the asymptotic regime and relate that to the characterizations in 
[17,18]. Using simulated trajectories of (7) and applying our DMAP methodology with an output-only informed metric, 
we coordinatize the model manifold through the independent eigenmodes (φ1, φ4). Figs. 8(c–d) show that manifold in 
DMAPS space; the asymptotic limit is the lower-left bounding curve (light blue). We can use these diffusion coordinates 
to characterize the asymptotic regime as a neighborhood of that boundary, so that the success of εh and ε in capturing that 
regime is measured by the extent their level sets track the boundary. Figs. 8(c–d) color the DMAPS domain by εh and by ε; 
plainly, the ε-coloring traces the domain boundary quite well, with ε  1 represents a bona fide neighborhood of it. Small 
values of εh , on the other hand, fail to outline such a neighborhood: all level sets coalesce at the single point representing 
the εh-axis (i.e. the regime σ ↓ 0). This is made even plainer in Fig. 8(e–f), where one sees how the εh  1 regime misses 
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Fig. 8. (a) Relevant parameter domains in (εh, ε)-space and in (σ , ε)-space (inset; both logarithmic), related through σ = 1/(εh/ε − 1). Boundaries are 
colored consistently across panels to help visualize the transformations between spaces. (b) Model manifold M in output space, as (εh, ε) vary and κ = 10
is fixed. (c–d) Model manifold observed in DMAPS space, colored by εh in panel (c) and by ε in panel (d). (e) Similar to (a) but with uniform (not 
logarithmic) spacing, and with the highlighted regions εh  1 (orange triangle) and ε  1 (orange triangle and purple rectangle). (f) Image of the regions 
highlighted in panel (e) in DMAPS space.

a substantial part (colored purple) of the asymptotic regime captured by ε  1. On account of this, we can conclude that 
ε is indeed a better “small parameter” than εh . It is important to note that a black-box, data-driven approach can have no 
knowledge of ε, εh or any other “human” description of the problem. What it can do, as we just saw, is enable us to test 
human-generated hypotheses on the data; we – or Segel and Slemrod [18] – are the ones generating the hypotheses.

4. Non-invertible input-output relations

Throughout this paper so far, we have used an output-only-informed kernel to obtain intrinsic DMAPS parameterizations 
of the combined input–output manifold. Our approach consisted of using eigenfunctions of the Laplace–Beltrami operator 
on the model manifold, and our insights about parameter (input) space came from how it was jointly parametrized by these 
eigenfunctions. The approach was useful in the data-driven study of parameter non-identifiability and even sloppiness. We 
will now show that it fails dramatically when the mapping from parameter space to the model manifold is noninvertible, 
i.e. when distinct, isolated parameter values produce identical model responses, f(p) = f(p′) for p �= p′ .

A well-known instance of this situation arises in the study of reaction–diffusion in porous catalysts and is illustrated in 
Fig. 9. For isothermal reactions, the output – the dimensionless “effectiveness factor” f(p) ≡ η – is a monotonic function 
(with known asymptotic limits) of the input – the Thiele modulus p ≡  [19] (Fig. 9, left). For exothermic reactions, however, 
η may depend on  nonmonotonically and the relation becomes noninvertible; alternatively, points on the model manifold 
are revisited, as the input sweeps the positive real axis, Fig. 9 (right). Sampling the input  uniformly on the horizontal 
axis naturally results in a nonuniform density for the output η on the vertical axis (plotted on the right of each panel in 
Fig. 9). This observed output probability density function (pdf) embodies the input-output relation and brings to mind an 
analogy with Bayesian measure transport from a prior density to a posterior one. It is worth noting that, noninvertibility 
causes pronounced discontinuities on the output pdf on the right.

Coloring input–output (η − ) profiles by the leading DMAPS eigenfunction of an output-only-informed kernel shows 
that the data-driven coordinate, φ1, which successfully recovered (parameterized) the input  on the left fails to do so on the 
right. The problem lies with the output-only metric employed, and its resolution requires a new, more informative DMAPS 
kernel such as
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Fig. 9. Left: Output η, vs. input  for the isothermal catalyst pellet (β = 0.0, see SI) colored by φ1. Right: Same plot for a nonisothermal (β = 0.2) pellet. 
For uniform input  sampling, the observed output pdf’s (see text) are plotted alongside each panel. Using output-only informed DMAPS is unable, as the 
coloring shows, to accurately parameterize the noninvertible case: Widely different sections of the curve on the right take on the same color. Note also the 
discontinuity in the density along the η axis in the right figure, a hallmark of noninvertibility.

Fig. 10. (a) Input , output η and DMAPS eigenfunction φ∗
1 corresponding to (9) plotted against the arclength of the curve in Fig. 9. The eigenfunction 

clearly parameterizes both input and output. (b) Input–output response curve colored by the eigenfunction φ∗
1 using (9) with ε = 0.0125. In both (b) and (c), 

 was sampled on a uniform grid between 0.9 and 10 for a total of 1043 points. (c) Plot of log(ηi+�) (corresponding to log(i) + � where � ≈ 0.05.) 
against log(ηi) (corresponding to log(i)); this “delay embedding” is one-to-one with the original curve. (d) Input–output response curve colored by the 
eigenfunction φ∗∗

1 corresponding to the “augmented output” DMAPS kernel K ∗∗ ≡ exp
(−(η̄ − η̄′)2/ε2

)
, where η̄ = (ηi , ηi+�) and similarly for η̄′ . Here we 

used ε = 0.01. Either of these new, modified kernels parameterizes the non-invertible response curve successfully.

K ∗(p,p′) = exp

(
−‖p − p′‖2

ε2
− ‖f(p) − f(p′)‖2

εa

)
. (9)

Taking into account both inputs (p − p′) and outputs (f(p) − f(p′)), this kernel manages to differentiate inputs having the 
same output. Fig. 10(b) corroborates the appropriateness of this kernel for a = 4: its primary eigenvector varies monotoni-
cally over the model manifold. This is also evident in Fig. 10(a), in which we have plotted input, output and the data-driven 
parameter φ∗

1 against arclength of the input–output response curve. In effect, φ∗
1 is in an one-to-one correspondence with 

the arclength, and thus “discovers” a good parameterization of the curve. This particular (a = 4) kernel – originally pro-
posed by Lafon [7] in a different context – prioritizes output over input; due to the ε-scalings, the input-term only becomes 
significant when needed, i.e. for nearby inputs producing similar outputs.

The use of appropriately scaled input and output similarities can thus resolve input–output noninvertibility. Can such 
noninvertibility be resolved when we do not know the inputs, yet have some control over the measurement process? 
The answer is, remarkably, in the affirmative. A data-driven parameterization of input space can be obtained even in the 
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Fig. 11. Comparison of Active Subspaces and DMAPS in local patches for a model similar to that shown in Fig. 1. See text and also SI. Here, f(p) =
(log(p1 p2)).

absence of actual recorded input measurements by using a little local history of output measurements in the spirit of the 
Whitney, Nash and Takens embedding theorems [20–22]. Fig. 10(c–d) illustrates how unmeasured inputs can, in a sense, be 
recovered by recording pairs of output measurements rather than single output measurements. Specifically, we formulate a 
measurement protocol in which the output η is measured sequentially, first for a random input  and then for  =  + �

(for some unknown but fixed �). Using this analogy to Takens delay embeddings in nonlinear dynamics, redefining the 
model manifold in terms of such measurement pairs, and reverting to the output-only-informed metric based on such pairs 
yields a single data-driven effective parameter φ∗∗

1 which consistently parametrizes both the (unkown) input  as well 
as the output η pairs. Using a little measurement history can thus also resolve model noninvertibilities, and allow us to 
parametrize input-output relations.

Discussion
We presented and illustrated a data-driven approach to effective parameter identification in dynamic “sloppy” models – 

model descriptions containing more parameters than minimally required to describe their output variability. Our manifold-
learning tool of choice was Diffusion Maps (DMAPS), and we applied it to datasets that typically consisted of input–output 
combinations generated by dynamical systems. The inputs were mostly model parameters, but we also viewed initial con-
ditions as inputs to differentiate between (what traditionally would be referred to as) singularly and regularly perturbed 
multiscale models. The outputs were ensembles of temporal observations of (some of) the state variables. By modifying the 
customary DMAPS kernel to rely mainly on – or, in most of the paper, only on – the observed outputs, we were able to 
“sense” the sloppy directions and automatically unravel nonlinear effective model re-parameterizations.

It is important to note that, as often the case with numerical procedures, this approach does not characterize the effective 
parameters through explicit algebraic formulas. In fact, we saw in our treatment of the ABC model that an off–the–shelf, al-
gebraically formulated effective parameter (kQSSA

eff ) predicted system output worse than the parameter found by DMAPS. This 
approach (a) helps test hypotheses about the number and physical interpretability of effective parameters, see our in-context 
discussion of the MMH model; (b) provides a natural context in which to make predictions for new inputs, through “smart” 
interpolation (matrix/manifold completion); and (c) assists experimental design through intelligent sampling of input space 
(see e.g. the biasing of computational experiments in [23,24]). Clearly, what was achieved here by the sampling of ODE 
model outputs can in principle be extended to PDE models by sampling in time and space. The leading eigenfunctions of 
our DMAPS-based approach (effective parameters) are, in general, nonlinear combinations of the system parameters. Actively 
changing the value of these combinations –“moving transversely to level sets” of the eigenfunction – leads to appreciable 
changes of the model output.

It is interesting to draw an analogy between identifying these effective parameters and the linear parameter combina-
tions of Constantine and coworkers [3] affecting scalar model predictions: what they call “active subspaces” (see SI for a 
more detailed comparison). The analogy is illustrated here in Fig. 11, for which we used our first, simple model that gave 
rise to Fig. 1 but with the scalar output f(p) = log(p1 p2). The active subspace approach, applied independently to each of 
the datasets shown as oval patches, yields the solid black direction as “neutral” and their normal as the active subspace (per 
patch). To enable comparison, each dataset is also colored by the value of the leading DMAPS eigenfunction φ1 obtained 
with the output-only-informed metric. DMAPS plainly gives nonlinear “neutral” level sets (gray lines), with φ1 providing a 
nonlinear version of an “active” parameter combination: an effective parameter. Combining the data across patches leaves 
our curved level sets consistent; a linear approach would encounter problems, as these level sets start curving appreciably. 
Two scenarios were discussed in this paper: the first, involving an output-only-informed kernel, proved useful in the data-
driven study of sloppiness. Coordinates from the intrinsic model manifold geometry pulled back on the input (i.e. parameter) 
space provided our “effective parameters”. The second, less explored scenario involved the non-invertible case where the 
same model output is observed for different isolated inputs and, more generally, one has input-output relations. The simple 
modifications of the DMAPS metric we used to resolve this, and the connection we drew to a “measurement process history” 
and embedding theorems, is a simple first research step in the data-driven elucidation of complex input–output relations by 
designing appropriate measurement protocols. We expect that similarity measures exploiting a measurement process, rather 
than a single measurement (e.g. “Mahalanobis-like” pairwise similarity measures [25]) may well prove fruitful along these 
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lines. The physical interpretability of data-discovered effective parameters can be established in a postprocessing step, by 
testing whether they are one-to-one, on the data, with subsets of equally many of the physical parameters.
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