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An algorithm based on the Relaxation Redistribution Method (RRM) is proposed for constructing
the Slow Invariant Manifold (SIM) of a chosen dimension to cover a large fraction of the admissible
composition space that includes the equilibrium and initial states. The manifold boundaries are deter-
mined with the help of the Rate Controlled Constrained Equilibrium method, which also provides the
initial guess for the SIM. The latter is iteratively refined until convergence and the converged man-
ifold is tabulated. A criterion based on the departure from invariance is proposed to find the region
over which the reduced description is valid. The global realization of the RRM algorithm is applied
to constant pressure auto-ignition and adiabatic premixed laminar flames of hydrogen-air mixtures.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4890368]

I. INTRODUCTION

The detailed reaction mechanisms of practical fuels con-
tain hundreds of species participating in hundreds to thou-
sands of chemical reactions. In addition to the large number of
variables that need to be accounted for, disparate time scales
introduce stiffness and increase the computational cost of nu-
merical simulations. On the other hand, time scales associated
with transport phenomena cover a narrower range of typically
slower time scales. When the coupling of flow phenomena
with chemical kinetics is of interest, changes due to the fastest
time scales can be assumed to be equilibrated, and, after a
short transient, the system dynamics evolve on a manifold of
lower dimension. Dimension reduction can then be employed
to decrease the computational cost by representing the chem-
ical system with a smaller number of variables describing the
slow dynamics.

Dimension reduction techniques search for a systematic
way to decouple the fast and slow dynamics. More specifi-
cally, these methods aim at approximating the Slow Invariant
Manifold (SIM), i.e., the lower dimensional sub-manifold in
the phase space to which all solution trajectories are attracted
after a short transient. Detailed classification and reviews of
model reduction approaches for chemical kinetics and dynam-
ical systems in general can be found in Refs. 1–4.

For the purposes of this work, low-dimensional manifold
construction techniques can be broadly classified into two
categories.5 The first category is based on time scale analy-
sis to identify the slow and fast modes of the system. The
Computational Singular Perturbation (CSP) method proposed
an iterative refinement procedure aiming at approximating the
basis vectors spanning the slow and fast subspaces.6 Based on
the spectral decomposition of the Jacobian, which recovers

a)Electronic mail: frouzakis@lav.mavt.ethz.ch

the CSP basis at leading order, the Intrinsic Low Dimensional
Manifold (ILDM) method7 constructs a first-order approxi-
mation of the slow manifold.8

The second category includes geometrical approaches
for the SIM construction. For example, the thermodynamic
properties which are known functions of the system state
can be used to determine the low dimensional thermody-
namic manifolds, which are “good” in the sense that they
are not folded, multi-valued, discontinuous, non-realizable, or
non-smooth.4 The Rate-Controlled Constrained Equilibrium
(RCCE) method assumes that the variables evolve from the
initial to the equilibrium (steady) state through a sequence
of quasi-equilibrium states, which can be computed by mini-
mizing a thermodynamic Lyapunov function under appropri-
ate predefined constraints.9, 10 The temporal evolution of the
system can be expressed as a function of the rate of change
of the constraints. Similarly, an Invariant Constrained Equi-
librium (ICE) manifold is constructed from trajectories ema-
nating from the constrained equilibrium edge, which can be
defined by a RCCE-like approach; the local species recon-
struction can be obtained with the help of preimage curves.11

Trajectories which are closest to equilibrium are alternative
candidates for the slow manifold. In the Minimal Entropy Pro-
duction Trajectories (MEPT) approach, entropy production is
used as an indicator to discriminate the trajectories.12 The
manifolds obtained using thermodynamic functions, which
often are neither slow nor invariant,5 are only approximations
of the SIM.

Other constructive methods are based on the iterative
solution of the partial differential equations defining the
slow manifold (e.g., Ref. 13), on finding the invariant man-
ifold connecting the equilibrium state to (usually unphysical)
saddle points,5, 14 and on trajectory-optimization variational
approaches,12, 15 which was recently applied for the construc-
tion of a two-dimensional SIM for syngas combustion.16

0021-9606/2014/141(4)/044102/13/$30.00 © 2014 AIP Publishing LLC141, 044102-1
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Formally, the slow dynamics can be described by the film
equation (see Sec. II), which in the general case can be solved
iteratively starting from an initial guess that is gradually re-
laxed to the slow manifold. The Method of Invariant Grids
(MIG) for chemical kinetics defines the slow manifold as a
collection of discrete points in concentration space, which lie
on the steady solution of the film equation.17

In the spirit of the MIG, the Relaxation Redistribution
Method (RRM) was proposed as a way to construct slow man-
ifolds of any dimension by refining an initial guess (initial
grid) until it converges to a neighborhood of the SIM.18 In
its local realization, stability of the RRM refinements pro-
vides a criterion for finding the dimension of the local reduced
model.18 This dimension may become large when extending
the manifold to cover the whole composition space (up to the
full system dimension in the hydrogen combustion example
considered in Ref. 18). As such, the local formulation of RRM
requires smart storage/retrieval tabulation methods for com-
putational efficiency.

In this paper, we propose a RRM-based method for the
construction and tabulation of manifolds of fixed pre-selected
dimension. For this purpose, RCCE is employed to obtain
an initial guess for the manifold and the manifold boundary,
which is kept fixed, while the RRM algorithm is applied to
the interior points. For the region within the RCCE-defined
boundary where the slow dynamics can be described by a
SIM with the chosen dimension, the algorithm converges to
the slow invariant manifold. An indicator for the quality of
the reduction is proposed based on a measure of the mani-
fold invariance. For the region where a higher-dimensional
reduced description is required, the algorithm still converges
to a manifold which approximates the invariant manifold bet-
ter than the RCCE manifold of the same dimension. The al-
gorithm is applied to hydrogen-air mixtures and the tabulated
reduced description is validated in homogeneous systems as
well as in a laminar premixed flame.

The paper is organized as follows. In Sec. II, the basic
notion of the slow invariant manifold and the film equation of
dynamics are briefly discussed, and the features of the RRM
method are presented using a singularly-perturbed nonlinear
system of ordinary differential equations. In Sec. III, detailed
reaction kinetics is reviewed briefly. The initialization of the
slow manifold, the refinement procedure based on RRM, and
the use of pre-tabulated manifold are presented in Sec. IV.
Finally, the results of RRM manifold for auto-ignition
and laminar premixed flame of hydrogen-air mixture are
presented in Sec. V.

II. SLOW INVARIANT MANIFOLD AND RRM

Consider an autonomous system satisfying the Cauchy-
Lipschitz existence and uniqueness theorem with a single sta-
ble fixed point (unique equilibrium) whose detailed (micro-
scopic) dynamics are described by the evolution of its state
vector N(t) in a ns-dimensional phase space S, N(t) ∈ S ⊂
Rn

s ,
dN
dt

= f (N), (1)

where f is a vector valued function, f : S → Rn
s .

A domain U ⊂ S is a positively invariant manifold if ev-
ery trajectory of system (1) starting on U at time t0 remains
on U for any t > t0. Therefore, N(t0) ∈ U implies N(t) ∈ U for
all later times t > t0.

The dynamics of (1) is typically characterized by differ-
ent time scales. For significant time scale disparity, after an
initial transient solution, trajectories are quickly attracted to a
lower dimensional manifold where they continue to evolve at
a slower time scale towards the steady state Neq ∈ S. This pos-
itively invariant manifold is the SIM,1 and its construction can
be based on the definition of fast and slow sub-spaces within
the phase space.19–21

Neglecting the initial fast transient, the long-time dynam-
ics can be described by a (possibly significantly) smaller num-
ber of the slowly-evolving macroscopic variables ξ , which
can be used to parametrize the SIM. The nd < ns macro-
scopic variables ξ belong to an nd-dimensional space �, and
can be used for the description of the reduced dynamics of
(1). The manifold parametrization space � can be spanned
by different combinations of the state variables, N ∈ S. A mi-
croscopic state N located on the low-dimensional manifold is
shown schematically in Fig. 1(a). More formally, any point
x on W satisfies x = F (ξ ) where F : � → S maps points
ξ ∈ � on the manifold parametrization space onto the corre-
sponding point on the manifold W which is embedded in the
phase space S (see Ref. 1).

The evolution of a state N can be decomposed into the
slow component along TW, the tangent space of W, and its
complement in the transverse direction (Fig. 1(a)),

f (N(ξ )) = f (N(ξ ))‖
TW

+ f (N(ξ ))⊥
TW

. (2)

The slow and fast components are defined, respectively, as

f (N(ξ ))‖
TW

= P f (N(ξ )), (3)

f (N(ξ ))⊥
TW

= �(N(ξ )) = f (N(ξ )) − P f (N(ξ )), (4)

in terms of an ns × ns projection matrix P and the defect of
invariance �(N(ξ )).

By definition, W is a positively invariant manifold if any
state that is initially on W remains on it during the subsequent
time evolution. Hence, relaxation will only proceed along the
tangent space and the normal component should be zero,

�(N(ξ )) = 0, ξ ∈ �. (5)

Equation (5) is known as the invariance condition, which can
be solved for the unknown slow invariant manifold. In the
Method of Invariant Manifold (MIM), the SIM is the stable
solution of the so-called film extension of dynamics,1

dN(ξ )

dt
= �(N(ξ )), (6)

which defines an evolutionary process guiding an initial guess
for the manifold towards the slow invariant manifold. In nu-
merical realizations, manifolds are usually represented by a
grid (discrete set of points), as proposed in the MIG.17 Due to
the locality of MIM construction, we make no further distinc-
tion between manifold and grid.
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(a) (b)

FIG. 1. (a) Schematic of the motion decomposition which is exploited in the construction of the slow manifold; (b) Relaxation Redistribution algorithm: the
effect of slow motions are neutralized via redistribution.

If the initial grid is subjected to the system dynamics, the
distance between the grid nodes shrinks and the whole grid
contracts to a neighborhood around the equilibrium state. The
key idea of RRM is to alternate a relaxation step with an ap-
propriate movement that counterbalances shrinking. One iter-
ation step of RRM is shown schematically in Fig. 1(b). After
relaxation, the nodes of the initial grid (filled circles) evolve
to different positions (open circles) and the macroscopic coor-
dinates change. The increased density of the grid points close
to equilibrium can result in a reduction of the grid spacing.
To prevent this, the redistribution step brings the macroscopic
coordinates ξ back to their previous values by interpolation
between the inner relaxed states and extrapolation for grid
points outside the contracted boundaries. The converged solu-
tion is the manifold containing all the states for which further
relaxations result in movement only along the manifold.

In order to clarify the aforementioned notions, the
singularly-perturbed dynamical system proposed in Ref. 22
is considered with N = (x, y)T,

dx

dt
= 2 − x − y, (7a)

dy

dt
= γ (

√
x − y). (7b)

For x(t), y(t) ∈ R, x(t) ≥ 0, and γ 	 1, the system evolves
from any initial condition (x0, y0) towards the fixed point at
(1, 1).

For γ = 20, choosing ξ = x to parametrize the mani-
fold and y = 1 − x as the initial grid, after a single integration
step (relaxation) with δt = 0.07, the initial grid (open squares)
contracts significantly (Fig. 2(a), open circles). Redistribution
is then applied to find the y values at the original locations
of the parametrizing macroscopic coordinates by linear inter-
polation between relaxed states on the interior grid and lin-
ear extrapolation at the boundary (two leftmost star symbols).
The RRM converges to the slow invariant manifold after 10
iterations for a tolerance of 10−4 (Fig. 2(b), solid line).

The defect of invariance � can be used as an indicator for
the time after which the reduced description becomes accu-
rate. For the chosen parametrization, the kernel of the projec-
tor P is (1, 0). P is spanned by its image, which is the tangent
subspace to the manifold, TW = imP, and the orthogonal to
the kernel. Hence,

P =
(

1
dy

dx

)
(1, 0) =

(
1 0
dy

dx
0

)
. (8)
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FIG. 2. (a) The effect of applying a single RRM step on the nodes of the initial grid; (b) comparison between ILDM manifold, RRM manifold, and sample
trajectories γ = 20.
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FIG. 3. Analysis of ILDM and RRM manifold for (7). (a) Defects of invariance and temporal evolution of the state for a sample trajectory. (b) Sample trajectory,
ILDM and RRM manifolds in phase space for γ = 20.

From (4), the defect of invariance is then

� = (I − P) f =
(

0
dy(ξ )
−dξ

(2 − ξ − y(ξ )) + γ
(√

ξ − y(ξ )
)) .

(9)
In this case, the manifold is smooth and dy(ξ )

dξ
along the man-

ifold can be accurately approximated numerically by second
order central differences.

In order to compare the manifold and its invariance with
the ILDM, the Jacobian J of (7),

J =
( −1 −1

γ

2
√

x
−γ

)
(10)

is needed. The symmetrized Jacobian J sym = J JT , which
offers the advantage of real eigenvalues, λ, and orthogonal
eigenvectors, v, can be used to define the fast and slow in-
variant subspaces of (7).23, 24 Let us define the matrix V
with a column partitioning given by the eigenvectors of J sym

ordered according to decreasing values of the correspond-
ing eigenvalues, V = (vslow, vf ast ) and its inverse V −1 =
( ṽslow, ṽf ast )T . For γ 	 1, the ILDM manifold, yILDM, ob-
tained by setting the inner product of ṽf ast with f 7, 24 equal to
zero has the approximate form

y = √
x. (11)

The ILDM manifold is plotted in Fig. 2(b) (dashed line) to-
gether with several trajectories (dotted-dashed lines) and the
RRM manifold (solid line). Trajectories initialized at the left-
most boundary of the ILDM (open squares) and RRM (open
circles) manifolds are also shown. In this case, the ILDM
manifold is neither invariant nor slow, except close to the
steady state. On the other hand, different solution trajectories
are quickly attracted (Fig. 3(a)) to the RRM manifold, which
is also seen to be invariant.

For the initial condition (x0, y0) = (0.1, 1.0), the tempo-
ral evolution of the state and the Euclidean norm of � for
the RRM and ILDM manifolds of system (7) are plotted in
Fig. 3(a). The defect of invariance for the RRM manifold is
an order of magnitude lower than for ILDM, implying that
the RRM manifold is a better approximation for the SIM. As
it can be seen from Fig. 3(b), the trajectory is attracted to the
RRM manifold at (x, y) 
 (0.4, 0.6). At this location, the de-

fect of invariance for the RRM manifold is less than 0.03,
while for ILDM it is approximately 0.6.

III. CHEMICAL KINETICS

Consider a homogeneous mixture of ideal gases consist-
ing of ns species and ne elements reacting under constant pres-
sure p in a closed system. The number of moles are repre-
sented by the vector N = (N1, N2, . . . , Nn

s
)T and the change

in the chemical composition of the species, results from r re-
versible reactions between the ns reactants Mi,

n
s∑

i=1

ν ′
ikMi

⇀↽

n
s∑

i=1

ν ′′
ikMi, k = 1, . . . , r, (12)

where ν ′
ik and ν ′′

ik are the stoichiometric coefficients of species
i in reaction k for the reactants and products, respectively. The
rate of progress of reaction k is

qk = kf
k

n
s∏

i=1

[Xi]
ν ′
ik − kr

k

n
s∏

i=1

[Xi]
ν ′′
ik , k = 1, . . . , r, (13)

where [Xi] denotes the molar concentration of species i and
kf

k
and kr

k
are the forward and reverse rate constants having

the modified Arrhenius form

kf
k
= AkT

β
k exp

(−Ek

RcT

)
, (14)

with Ak, βk, Ek, and Rc being the pre-exponential factor, tem-
perature exponent, activation energy, and ideal gas constant,
respectively. The forward and reverse rate constants are re-
lated via the equilibrium constant, Kc

k
(T ),

kr
k
=

kf
k

Kc
k

. (15)

The rate equation for species i is given by

d[Xi]

dt
=

r∑
k=1

(ν ′′
ik − ν ′

ik)qk, i = 1, . . . , ns. (16)

Using the reactor volume V , the change in the mole number
of species i can be rewritten in the form of Eq. (1),

dN
dt

= f (N). (17)
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The ne elemental conservation constraints can be expressed in
terms of an ne × ns elemental constraints matrix, E, as25

EN = ξ e, (18)

where ξ e is specified by the initial composition and Eji de-
notes the number of atoms of element j in species i.

In a constant pressure adiabatic system the reactions pro-
ceed at constant enthalpy and the temperature evolution is
governed by

dT

dt
= − 1

ρcp

�
n

s

i=1hiω̇iWi,

where, ρ is the mixture density and Wi , hi, and ω̇i are
molecular weight, enthalpy and production/destruction rate
of species i. According to the second law of thermodynam-
ics, the system under consideration is equipped with a convex
state function, the entropy S, which attains it global maximum
at equilibrium. The negative of entropy, which for ideal gas
mixtures under isobaric and isenthalpic conditions takes the
form18

G = −S = −
∑n

s

i=1 Xi

(
si(T ) − Rc ln(Xi) − Rc ln

(
p

p
ref

))
W

(19)
is a thermodynamic Lyapunov function for the dynamics de-
fined by (17) in terms of si, the specific entropy of species
i, W = ∑n

s

i=1 XiWi the mean molecular weight, p and pref,

the system and reference pressures; Xi = Ni/
∑n

s

j=1 Nj is the
mole fraction of species i.

The equilibrium composition, Neq, is the solution of the
constrained minimization problem

min G

s.t. EN = ξ e.
(20)

This Lyapunov function can be exploited not only to compute
the equilibrium but also for the derivation of the reduced de-
scription as described in Sec. IV.

IV. CONSTRUCTION OF THE REDUCED
DESCRIPTION

The local realization of the Relaxation Redistribution
Method18 constructs and tabulates SIMs with dimension nd
adaptively varying in different regions of the phase space.
Adaptation of the dimension is based on the failure of the al-
gorithm to converge after a fixed number of iterations, which
is taken as an indicator that the SIM dimension should be in-
creased.

However, the computational cost associated with the
manifold representation on a grid and the retrieval of informa-
tion from high dimensional tables imposes restrictions on the
dimensionality of the slow manifold, the target being a two- or
three-dimensional table.4 A low-dimensional SIM is usually
limited to a small neighborhood of phase space around the
equilibrium point, leaving open the problem of its extension
to cover all admissible states.26

In this paper, the global realization of the RRM with an
a priori chosen manifold dimension is employed. In particu-

lar, a RCCE manifold, which provides “good” manifolds as
discussed in the Introduction, with dimension up to three is
used to define the initial SIM. The initial approximation is
subsequently refined using RRM. For regions of the phase
space in the neighborhood of the equilibrium, the method con-
verges to the SIM. For states farther away, where no SIM with
the chosen dimension exists, the refined Quasi-Equiibrium
Manifold (QEM) defined below provides an accurate exten-
sion as will be shown in Sec. V. In addition to the parametriza-
tion of the SIM, the initial RCCE manifold defines the bound-
aries which are kept fixed during the application of RRM.

A. Initialization: The quasi-equilibrium manifold

For systems equipped with a Lyapunov function, a re-
duced description can be obtained based on the notion of the
QEM1 (known as Constrained Equilibrium Manifold (CEM)
in the combustion literature9, 10). QEM assumes that the sys-
tem relaxes to equilibrium through a sequence of quasi-
equilibrium states at a rate controlled by a set of appropri-
ate slowly-varying constraints ξ .1, 9, 10, 27 Since the Lyapunov
function G decreases in time, a QEM can be interpreted as the
constrained minimum of G.

In addition to the elemental conservation constraints
(Eq. (18)), QEM imposes a priori nd linear constraints on the
system state defining the slow macroscopic variables

ξ d = (Bd )N, (21)

where Bd is an nd × ns matrix with rows obtained from the
coefficients of the linear combinations of the number of moles
providing the nd slow parametrizing variables ξ d . Thus, the
total number of constraints amounts to nc = ne + nd, and the
QEM is the map NQEM(ξ ), obtained by solving the following
constrained convex minimization problem:

min G,

s.t. BN = ξ .
(22)

Here, B = [EBd] is the nc × ns constraint matrix and
ξ = [ξ eξ d ] the constraint vector with nc elements. The ns-
dimensional state N can then be parametrized by the nc vari-
ables ξ . For model reduction purposes, nc � ns.

In closed reactive systems, the elemental mole numbers
must be conserved. Hence, EN = ξ e is fixed upon definition
of the fresh mixture condition. The constraint matrix Bd can
be selected on the basis of numerical results of detailed so-
lutions for similar problems, as suggested, for example, in
Ref. 28. Alternatively, a suitable parametrization can be ex-
tracted using the spectral decomposition of the Jacobian ma-
trix evaluated at the equilibrium point.29 It should be pointed
out that a QEM is typically neither an invariant nor a slow
manifold.27

The choice of a good set of constraints can be challeng-
ing. In addition to intuition and the mentioned approaches,
CSP analysis of detailed simulations can aid in the selection.28

The Level Of Importance (LOI), which finds the species as-
sociated with the short time scales by means of a combined
species lifetime and sensitivity parameters, has also been used
in the RCCE context.30
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TABLE I. Matrix Bd for the H2/air mixture.

Reduced variable H2 N2 H O OH O2 H2O HO2 H2O2

ξd
1 =TM 1 1 1 1 1 1 1 1 1

ξd
2 =AV 0 0 1 2 1 0 0 0 0

ξd
3 =FO 0 0 0 1 1 0 1 0 0

The RCCE method, which is based on the QEM ap-
proach can be used either as proposed originally,31–33 or in
combination with other methods.34 The most commonly em-
ployed slowly-changing constraints are the total number of
moles (TM), the total number of radicals referred to active
valence (AV), and free oxygen (FO), which refers to the re-
actions where the O–O bond is broken.27 These RCCE lin-
ear constraints for hydrogen/air combustion are specified in
Table I. The RCCE manifold is unique and infinitely dif-
ferentiable, and can be used even for states far from
equilibrium.25, 35 In this paper, we exploit the QEM notion
only to construct the initial approximation of the SIM and to
define the manifold boundaries.

B. The global relaxation redistribution algorithm

As discussed in Sec. II, the boundaries of the initial grid
shrink during relaxation. In the local RRM, reconstruction of
the boundary points by re-stretching the relaxed grid to the
fixed boundaries is done by linear extrapolation. However,
such an approach cannot always guarantee physically mean-
ingful values for the species concentrations. In order to avoid
these difficulties, the boundary of the SIM can be fixed to the
initial guess provided by the QEM, and the RRM procedure
is applied only to the interior grid points.

The embarrassingly simple steps for the computation of
the global manifold proceed as follows:

1. Choose the manifold dimension nd and select the
parametrizing variables ξ i.

2. Construct the nd-dimensional QEM, NQEM(ξ d ), by solv-
ing the minimization problem (22). This manifold cor-
responds to constructing the initial grid indicated by the
solid line with filled circles in Fig. 1(b).

3. Fix the grid boundaries to the boundaries of QEM.
4. Relax the interior grid nodes by integrating

dN
dt

= f (NQEM(ξ d )) (23)

for a fixed time step �t to obtain Nrelax. As shown
schematically in Fig. 1(b) (filled circles relaxing to-
wards the open circles), this equation expresses the tem-
poral evolution of composition confined onto the SIM.
The new locations of the relaxed nodes in the manifold
parametrization space � are then obtained from

ξ d
r = (Bd )Nrelax . (24)

5. Redistribute the grid nodes back to the original locations
in the manifold parametrization space

Nrelax(ξ d
r ) → NRRM (ξ d ) (25)

using interpolation through the scattered relaxed nodes.
This is similar to finding the filled squares in Fig. 1(b),
with the difference that boundaries are fixed and there is
no extrapolation between the relaxed nodes.

6. Repeat steps 4–5 until the grid points do not change ap-
preciably.

It should be pointed out that the reduced descriptions ob-
tained by this algorithm are closely related to the ICE-PIC
approach suggested by Ren et al. in Ref. 11, as both proce-
dures construct invariant manifolds forced to pass by the same
boundary points (QEM boundary points).

C. Rate equations for the slow variables

Once the slow invariant manifold is constructed, the tem-
poral evolution of the reduced system along the SIM can be
recast in the following general form in terms of the macro-
scopic slow variables ξ d chosen to parametrize the SIM:

dξ d

dt
= (Bd )P f (NRRM (ξ d )). (26)

If the slow invariant manifold is known with high ac-
curacy, the vector field f is perfectly aligned with the man-
ifold’s tangent space and the state would never depart from
the manifold. In most computational applications of practi-
cal interest, however, SIM approximations with different lev-
els of accuracy are employed, and the chosen parametrization
cannot completely decouple the fast and slow components. In
these cases, (Bd ) f does not lie on the tangent space of the
SIM and a projector P is needed to bring the state back to the
manifold.

Different projectors have been proposed in the literature.
The ILDM projector recovers the fast subspace to leading or-
der, and the kernel of the projector is constructed using the
fastest eigenvectors of the local Jacobian. Higher order ap-
proximations can be constructed using the CSP basis vectors.
Details on the ILDM and CSP projectors can be found in
Refs. 6 and 7. Another option for P is the thermodynamic
projector,36 which can be constructed on the basis of the local
tangent space to the SIM and the derivatives of a thermody-
namic Lyapunov function (19).37

In the classical RCCE method, it is assumed that states
of the system always remain on the QEM and the rate equa-
tions for the slow parametrizing variables is close to the tan-
gent space of the manifold.27 The ns-dimensional composi-
tion space is decomposed into the nd-dimensional represented
subspace spanned by the rows of Bd and its orthogonal com-
plement, the unrepresented subspace of dimension ns − nd.
The projection matrix then becomes the ns × ns-dimensional
identity matrix which implies that the rate of change in the
unrepresented subspace is negligible. Therefore, we rely upon
the fact that fast motions are expected to mostly occur in the
null space of the Bd matrix. For a more detailed analysis of
this projector see Ref. 38. The same approach was used in the
applications of Sec. V.

The following steps describe the implementation of re-
duced chemistry in a reacting flow simulation: (a) From
the specified composition at time tn, Nn = N(tn), and the
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thermodynamic conditions, the values for the parametrizing
variables can be found using Eq. (21),

(Bd )Nn = ξ d
n. (27)

(b) The rate equations (26) for ξ d , are advanced in time to
find ξ d

n+1, where NRRM
n are the projected values of N(tn) on

the SIM.
The reduced model can be tabulated in terms of either the

reduced state NRRM or of the projected right hand side of the
evolution equations (Bd ) f (NRRM ). In the former case, inter-
polation of the tabulated data is used to retrieve the composi-
tion vector corresponding to ξ d

n+1. In the latter, the right hand
side of (26) is obtained directly to proceed with the integration
of the reduced system and the compositions can be obtained
separately in a post-processing step.

The overall computational cost for the integration of the
full system of ns differential equations is thus replaced by the
cost of integrating nd differential equations and of interpola-
tion. The following practical issues should be pointed out: (i)
Choosing the appropriate constraints with respect to the ini-
tial composition is important. The kernel of Bd should not
be spanned by the f (NRRM

n (ξ d )) vector, since in that case
dξ d

dt
becomes zero and there is no temporal evolution of ξ d ;

(ii) Interpolation can affect the result strongly as shown in
Ref. 39. This effect can be controlled by refining the ta-
ble and/or using appropriate interpolation methods, albeit
at higher computational cost; (iii) By construction, the ap-
proach presented here guarantees that the equilibrium will
be accurately captured by the reduced description. This ap-
pears to not always be the case with reduced mechanisms
proposed in the literature; (iv) In problems like the ignition
delay time considered in Sec. V, the projection of the ini-
tial state on the manifold is crucial for the comparison with
the prediction of the detailed reaction mechanism. In the
literature, the comparison is often made by taking the ini-
tial state to lie on the manifold. In the auto-ignition valida-
tion of Sec. V good results are obtained by comparing the
detailed solution with those obtained by projecting the ini-
tial state on the manifold using the constrained equilibrium
assumption.

V. VALIDATION AND DISCUSSION

A. Auto-ignition of homogeneous mixtures

The global RRM method is applied to a homogeneous
H2/air mixture using the detailed reaction mechanism of Li
et al.40 (ns = 9 species and 21 reactions) at atmospheric pres-
sure and different initial temperatures T0.

The initial reactant composition is that of a stoichiomet-
ric mixture (N0

H2
= 1.0, N0

O2
= 0.5, and N0

N2
= 1.881 mole),

while the remaining species are assigned the chemically in-
significant positive values N = 10−12 mole to ensure strictly
positive species compositions at the constrained equilibrium
state and guarantee the existence and uniqueness of the so-
lution to the minimization problem (22).27 The equilibrium
point (steady state) can be computed by minimizing the
Gibbs function under constant pressure and enthalpy. Then,
the initial and equilibrium states are projected on the mani-
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FIG. 4. Projection of manifold (grid) onto �. The initial grid should contain
both the fresh mixture and equilibrium point, and extend in the manifold
parametrization space as far as the QEM convex minimization calculations
converge.

fold parametrization space, �, using (21). Different combi-
nations of constraints for hydrogen combustion have been in-
vestigated in the literature.27, 35 The TM and AV constraints
(Table I) have been found to give better agreement with re-
spect to ignition delay times for a wide range of thermody-
namic conditions and are chosen for the ξ parameterization.
Starting from a sufficiently large range in the parametriza-
tion space that contains the initial and steady states, the CEQ
code41, 42 is used for the construction of the RCCE-based ini-
tial manifold as discussed in Sec. IV B. The code computes
the constrained equilibrium state by minimizing the Gibbs
function under fixed pressure and enthalpy; the projection of
the computed initial manifold on � is shown in Fig. 4.

The boundary nodes are then fixed, and the RRM pro-
cedure is applied to the interior nodes. For the redistribution
step, the linear Shepard method implemented in the SHEP-
PACK package43 is used for interpolation,

NRRM (ξ d ) =
∑n

gp

k=1 αk(ξ d )Nrelax(ξ d
r )∑n

gp

k=1 αk(ξ d )
, (28)

where ngp is the total number of grid points and the weights
αk(ξ d ) are defined as

αk(ξ d ) = 1

‖ξ d − ξ
d(k)
r ‖2

2

. (29)

For initial temperature T0 = 1500 K, the two-dimensional
RCCE and global RRM manifolds for selected species are
plotted in Fig. 5 together with the trajectory obtained using the
detailed mechanism (thick solid line). For the major species,
the global RRM manifold brings only a slight improvement
over the RCCE manifold, while for HO2 and H2O2 the im-
provement is significant. As it can be seen in Fig. 5, the RCCE
manifold is not invariant. This is more clearly seen in the
temporal evolution of the temperature and species mass frac-
tions, plotted in Fig. 6. Good agreement is found with the de-
tailed description for the temperature and major reactants as
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FIG. 6. Time histories of the temperature and species mass fractions for H2/air autoignition with unburnt temperature T0 = 1500 K.

well as the radicals with high enough concentration. Far away
from equilibrium, the RCCE manifold strongly underpredicts
the concentration of HO2 and H2O2. The time history of the
weighted root mean square norm as used for error estimation
in Ref. 44 of the defect of invariance vector is plotted in Fig. 7
together with the temperature profiles computed using the de-
tailed and reduced descriptions. After 40 μs, the defect drops
below 10−4 and the detailed and reduced models are in good
agreement. This illustrates that the defect of invariance is a
convenient indicator of the accuracy of the reduced descrip-
tion. During the initial transient, a higher-dimensional mani-
fold should be used.

The number of right hand side function evaluations nfe
during integration can be used as an indicator for the stiff-
ness. Figure 8 shows the temperature and nfe obtained by us-
ing the stiff ODE integrator DVODE44 with an output time
step δt = 10−5 (the integrator adapts the time step during in-
tegration from time t to t + dt). The initial composition for the
detailed mechanism was the stoichiometric mixture, while for
the reduced description its projection on the RRM manifold
was used. With the exception of a single time instant close to
ignition, nfe is lower for the reduced model during the whole
integration interval.

At a lower initial temperature T0 = 1000 K, the 2D man-
ifold can no longer provide an accurate reduced description
(Fig. 9). The construction of a 3D slow manifold is straight-
forward starting from an initial manifold constructed using all
constraints of Table I. The results obtained with RCCE with
two (open squares) and three (open circles) constraints, the
RRM 2D (dotted-dashed line) and 3D (dashed line) manifolds
are compared with the detailed evolution (solid line) in Fig. 9.
While the 3D RCCE manifold results in small improvement,
the increase in the manifold dimension of the RRM manifold
leads to very good agreement with respect to the prediction
accuracy of the ignition delay time and the temporal evo-
lution of temperature and species, with the exception of the
YH2O2

profile which displays a noticeable deviation from the
detailed mechanism profile. The ignition delay times, τ ig, de-
fined as the time corresponding to the inflection point of the
temperate profile are summarized in Table II.

The magnitude of the real part of the six non-trivial
eigenvalues of the Jacobian matrix during the temporal evo-
lution for T0 = 1000 K and T0 = 1500 K are reported in
Fig. 10. The absolute value of the inverse of the eigenval-
ues determine the time scales of the chemical modes and the
ratio λf/λs of the most to the less negative eigenvalues is an
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estimation for the stiffness. For T0 = 1000 K, the gap is λf/λs


 8.5 × 108, while for T0 = 1500 K the ratio becomes λf/λs


 5.6 × 105, reflecting the higher stiffness at lower temper-
atures. In addition, if time scales 1/|λ| shorter than 10−4 [s]
are considered as fast, the initial slow subspace of the T0 =
1000 K case is three dimensional while, for T0 = 1500 K, a

10

20

30

40

50

60

70

80

n fe

Detailed system n
fe

Reduced system n
fe

0.0 5.0×10
-5

1.0×10
-4

1.5×10
-4

2.0×10
-4

t [s]

1500

2000

2500

3000

T
 [

K
]

Detailed system temperature
Reduced system temperature

FIG. 8. Comparison of temperature evolution and number of source term
evaluations nfe obtained with the detailed mechanism and the reduced 2D
RRM description at T0 = 1500 K.

2D slow manifold can be used. Eigenvalues with positive real
part indicating explosive behavior were found initially in both
cases and time intervals where the eigenvalues cross and be-
come complex pairs were observed during the evolution from
the initial to the equilibrium state. Manifolds of higher dimen-
sions would be needed to capture more accurately the reduced
dynamics in these intervals, as was done in the adaptive ver-
sion of RRM.18 Careful examination of Fig. 10 for T0 = 1500
K reveals that eigenvalue crossings correspond to jumps in (a)
the defect of invariance vector (Fig. 7) and (b) the number of
source term evaluations nfe (Fig. 8). The effect of eigenval-
ues crossing on the quality of reduced model is discussed in
Ref. 45. It nevertheless appears that these short intervals do
not affect the quality of the manifold significantly.

B. Premixed laminar flame

The steady, atmospheric, adiabatic, one-dimensional
laminar premixed flame of a stoichiometric hydrogen/air mix-
ture and multi-component transport properties was considered
in order to study the ability of the 2D RRM manifold con-
structed from the homogeneous auto-ignition of an unburnt
mixture at Tu = 700 K to reconstruct the unrepresented vari-
ables in a case where transport phenomena play a dominant
role. A similar procedure was used for the validation of the
ICE-PIC manifold by Ren et al.11

In this case, the manifold parametrization becomes im-
portant since in the general case of non-unity Lewis numbers
it is difficult to solve the partial differential equations even
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FIG. 9. Temperature and species mass fractions as the function of time for H2/air auto-ignition, T0 = 1000 K. Detailed, RCCE with 2 Constraints, RCCE with
3 Constraints, RRM 2D manifold, RRM 3D manifold are compared.

when the parametrizing variables are linear combinations of
the original variables.46 Here, the quasi-equilibrium manifold
was constructed using the mole fractions of H2O and H2 as
slow constraints (ξ1 = XH2O and ξ2 = XH). The RRM refine-
ment process was applied starting from the QEM to find the
global two-dimensional manifold for Tu = 700 K. The species
concentrations as a function of the distance, x, is computed
using PREMIX from the CHEMKIN application suite.47 The
local values of XH2

and XH2O from the detailed chemistry 1D
flame structure were used to reconstruct the remaining species
using the RRM manifold.

TABLE II. Comparison of ignition delay times deduced from detailed and
reduced models.

Method τ
ig

(s)

Detailed 0.000213
RCCE TM+AV 0.000169
RCCE TM+AV+FO 0.000178
RRM 2D 0.000170
RRM 3D 0.000207

The agreement for the major species and tempera-
ture between the detailed solution and the reconstruction
is excellent (Fig. 11). The largest differences are observed
for the H2O2 radical and they can be mainly attributed
to the incorrectly predicted value of QEM at the “cold”
(unburned mixture) boundary. In addition to low dimen-
sionality effects, molecular diffusion in laminar flames can
drive the compositions away from the manifold, potentially
contributing in the differences observed in the O and H
radicals profiles. Similar observations are reported in the
literature, where different methods of projecting the diffu-
sion term onto the manifold were studied (see, for example,
Refs. 48 and 49).

VI. CONCLUSIONS

In this paper, we presented an algorithm based on the
RRM for the construction of the SIM of an a priori chosen
dimension which covers a large fraction of the admissible
composition space that includes the equilibrium as well as the
initial state.
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FIG. 10. Temporal evolution of the six non-trivial eigenvalues of the Jacobian along the solution trajectory: (a) T0 = 1000 K, (b) T0 = 1500 K.

The manifold parametrization and boundaries are deter-
mined with the help of the RCCE method, which also pro-
vides the initial guess for the SIM. The guess is iteratively
refined and the converged manifold is tabulated. The method

is easy to implement and robust to use for the construction of
reduced manifolds of high dimensionality, which were found
to be invariant over extended regions of the admissible space.
A criterion based on the departure from invariance is proposed
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to find the region over which the reduced description is valid.
The accuracy of the method was assessed by comparing tra-
jectories for auto-ignition calculations of homogeneous H2/air
mixtures at different initial temperatures T0. At T0 = 1500 K,
a 2D manifold is found to capture accurately both the igni-
tion delay time and the temporal evolution of all the species
and shows significant improvement with respect to the low
concentration species (HO2 and H2O2) compared to a RCCE
manifold. At T0 = 1000 K, a 3D manifold is needed to repro-
duce accurately the detailed dynamics with the exception of
the pre-ignition profiles of H2O2.

The significant reduction in the number of source term
evaluations indicates that the reduced descriptions are less
stiff. However, similar to all other reduction methods based on
tabulation, fast table searching, and interpolation algorithms
are essential for the overall efficiency of the reduced scheme.

The 2D RRM manifold can reconstruct the laminar pre-
mixed flame structure fairly accurately compared with the re-
sults obtained with the detailed mechanism, indicating that it
can be used in multidimensional simulations where transport
properties play a dominant role.
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