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Systems of coupled dynamical units (e.g., oscillators or neurons) are known to

exhibit complex, emergent behaviors that may be simplified through coarse-graining:

a process in which one discovers coarse variables and derives equations for their

evolution. Such coarse-graining procedures often require extensive experience and/or

a deep understanding of the system dynamics. In this paper we present a systematic,

data-driven approach to discovering “bespoke” coarse variables based on manifold

learning algorithms. We illustrate this methodology with the classic Kuramoto phase

oscillator model, and demonstrate how our manifold learning technique can successfully

identify a coarse variable that is one-to-one with the established Kuramoto order

parameter. We then introduce an extension of our coarse-graining methodology which

enables us to learn evolution equations for the discovered coarse variables via an artificial

neural network architecture templated on numerical time integrators (initial value solvers).

This approach allows us to learn accurate approximations of time derivatives of state

variables from sparse flow data, and hence discover useful approximate differential

equation descriptions of their dynamic behavior. We demonstrate this capability by

learning ODEs that agree with the known analytical expression for the Kuramoto order

parameter dynamics at the continuum limit. We then show how this approach can also

be used to learn the dynamics of coarse variables discovered through our manifold

learning methodology. In both of these examples, we compare the results of our

neural network based method to typical finite differences complemented with geometric

harmonics. Finally, we present a series of computational examples illustrating how a

variation of our manifold learning methodology can be used to discover sets of “effective”

parameters, reduced parameter combinations, for multi-parameter models with complex

coupling. We conclude with a discussion of possible extensions of this approach,

including the possibility of obtaining data-driven effective partial differential equations

for coarse-grained neuronal network behavior, as illustrated by the synchronization

dynamics of Hodgkin–Huxley type neurons with a Chung-Lu network. Thus, we build an

integrated suite of tools for obtaining data-driven coarse variables, data-driven effective

parameters, and data-driven coarse-grained equations from detailed observations of

networks of oscillators.
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1. INTRODUCTION

We study coupled systems comprised of many individual units
that are able to interact to produce new, often complex, emergent
types of dynamical behavior. The units themselves (motivated
by the modeling of large, complex neuronal networks) may be
simple phase oscillators, or may be much more sophisticated,
with heterogeneities and parameter dependence contributing
to the emerging behavior complexity. Each unit is typically
described by a system of ordinary differential equations (ODEs)
(1), where f is a function of the system state x, time t, and the
system parameters p,

dx

dt
= f(x, t; p). (1)

Examples of such systems from across the scientific domains
range from coupled reactor networks (Mankin and Hudson,
1986) and molecular dynamics simulations (Haile, 1997), to the
modeling of synchronization and swarming among oscillators
(O’Keeffe et al., 2017), and even to the oscillations of the
millennium bridge (Strogatz et al., 2005). For large coupled
oscillator ensembles, numerically evolving the system state can be
computationally expensive; yet several such systems of practical
interest feature an underlying structure that allows them to
be described through a small collection of coarse variables or
order parameters whose dynamic evolution may be described in
simpler, reduced terms. It is also observed that the dynamics of
these coarse variables may only practically depend on a reduced
set of parameters, the “effective” parameters of the system, which
themselves are specific, possibly non-linear, combinations of the
original, detailed system parameters. In general, uncovering such
coarse, descriptive variables and parameters, and approximating
their effective dynamic evolution is a significant undertaking,
typically requiring extensive experience, deep insight, and
painstaking theoretical and/or computational effort.

Here, we present and illustrate an alternative, automated,
data-driven approach to finding emergent coarse variables
and modeling their dynamical behavior. As part of our
methodology we make use of manifold learning techniques,
specifically diffusion maps (DMAPs) (Coifman and Lafon,
2006a), to systematically infer tailor-made descriptive variables
directly from detailed dynamical data itself, without any prior
knowledge of the underlying models/equations. This stands
in stark contrast to established, intuition-based or equation-
based coarse-graining methods, which rely on a combination
of system knowledge, experience and strongly model-dependent
mathematical techniques to invent or derive the coarse
variables/equations.

We begin our presentation with a brief outline of our
key manifold learning tool, the diffusion maps technique,
followed by an abridged introduction to the associated
geometric harmonics function extension method (Coifman
and Lafon, 2006b). Following these introductions, we present a
demonstration of our data-driven methodology for coarse
variable identification. After this, we consider the time
dependent behavior of coarse variables, and show how

their corresponding coarse dynamic evolution equations
can be learned from time series of dynamical observation
data by virtue of an artificial neural network architecture
templated on numerical time integration schemes. We
compare this approach to typical finite difference based
methods complemented with geometric harmonics. Finally,
we illustrate how manifold learning techniques can be used to
find “effective,” reduced sets of parameters in multi-parameter
coupled systems.

Motivated by the intended applications of our methodology
to neurological systems, we choose to illustrate our techniques
with one of the simplest neurobiologically salient models
available, the classic Kuramoto coupled phase oscillator model
(Kuramoto, 1975, 1984). The Kuramoto model has become
a popular choice to study synchronization (Schmidt et al.,
2014) and network topology in neuroscience (Rodrigues et al.,
2016). At first glance the scalar phase dynamics of the model
may seem to be insufficient or highly restrictive. However, the
phase reduction approach has become a standard technique
in computational neuroscience (Ermentrout and Kopell, 1986,
1990; Brown et al., 2004; Tass, 2007; Guckenheimer and Holmes,
2013) providing a link between computational models of neurons
and models of weakly coupled phase oscillators. Indeed, a
classical example of this approach is in the characterization of
a simple (class I) spiking neuron as a one dimensional phase
oscillator (Ermentrout and Kopell, 1986; Ermentrout, 1996).
Recently, phase based measures of synchrony have become a
typical feature in the characterization of large-scale experimental
neuroscience signals (Tass et al., 1998; Varela et al., 2001;
Breakspear, 2002; Stam et al., 2007; Penny et al., 2009). Advances
in the field of neural mass models have furnished standard
approcahes to describe the interaction between excitatory and
inhibitory neurons, such as the Wilson–Cowan model (Wilson
and Cowan, 1973). Weakly-coupled Wilson–Cowan oscillators
have subsequently been shown to exhibit similar interaction
dynamics to weakly-coupled Kuramoto oscillators (Izhikevich
and Hoppensteadt, 1997). The main deficiency of the Kuramoto
model is the lack of a spatial embedding for the oscillators;
however numerous modifications of the interaction term of the
model have been proposed to circumvent this difficulty, such
as time delays, distance-dependent transmission delays, finite-
support wavelet-like spatial kernels, and second order phase
interaction curves (Breakspear et al., 2010). These modifications
yield rich spatiotemporal behaviors, such as traveling rolls and
concentric rings (Jeong et al., 2002), which are similar to those
observed in vivo (Freemann, 1975; Prechtl et al., 1997; Lam
et al., 2000; Du et al., 2005; Rubino et al., 2006). Furthermore,
these modified models have been used to understand dynamical
behavior on cortical-like sheets (Honey et al., 2007; Deco et al.,
2009), simulate the BOLD signal (Cabral et al., 2011), and study
hypersynchronous neural activity (Schmidt et al., 2014).

We make use of the classic Kuramoto coupled phase oscillator
model and its variations throughout this paper as prototypical
examples to showcase our methodology. In our concluding
discussion and future work section we also mention the
possibility of discovering effective emergent partial differential
equation descriptions of heterogeneous network dynamics,
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illustrated through the synchronization of Hodgkin–Huxley type
neurons on a Chung-Lu type network.

2. DIFFUSION MAPS

Introduced by Coifman and Lafon (2006a), the diffusion maps
(DMAPs) method and associated algorithms form part of a class
of dimensionality reduction approaches, techniques which are
used to find the intrinsic dimensionality of high dimensional
data. Specifically, the diffusion map (DMAP) algorithm is a
manifold learning technique that seeks to address the problem of
parameterizing d-dimensional manifolds embedded in R

n based
on data, with d < n. It accomplishes this by constructing
a (discretized) Laplace operator on the data, such that the
operator’s eigenfunctions define embedding coordinates for
the manifold. An algorithm for numerically constructing this
operator is provided by Coifman and Lafon (2006a).

At the heart of the Laplace operator construction lies the
kernel, k. The kernel describes the affinity/similarity between data
points and serves to define the local geometry of the underlying
manifold. This information is frequently stored in a kernel matrix
K, where Kij is the kernel evaluated on data points i and j.
As the specific parametrization intimately depends on the data
geometry, it is essential to choose a kernel that captures the
relevant properties of the data. An example of a typical Gaussian
kernel with the Euclidean distance is shown in (2),

Kij = k(xi, xj) = exp

(
−
‖xi − xj‖

2
2

ǫ2

)
i, j = 1, . . . , n, (2)

where ǫ is a tunable kernel bandwidth parameter and ‖ · ‖2
is the Euclidean norm. By selecting different kernel bandwidth
parameters it is possible to examine features of the data geometry
at different length scales. Several heuristics are available to select
the value of the kernel bandwidth parameter (Dsilva et al., 2018);
here we select the median of the pairwise distances between the
data points xi as a starting point for our ǫ tuning.

After defining a kernel, the Laplace operator can be
approximated as follows. First, one forms the diagonal matrix D
withDii =

∑
j Kij, which is then used to construct thematrix K̃ =

D−αKD−α , where α is an algorithm parameter; the choice of α
determines the form of the operator that is approximated, which
in turn dictates the influence of the sampling density of the data
on the parametrization of the underlying manifold. Common
choices are: (a) α = 0, the normalized graph Laplacian (the one
most influenced by the sampling density and useful for uniformly
sampled manifolds), (b) α = 0.5, Fokker–Planck diffusion, and
(c) α = 1, the Laplace–Beltrami operator (which removes the
influence of the sampling density). Next, one constructs the
diagonal matrix D̃ with D̃ii =

∑
j K̃ij and uses this to form the

matrix A = D̃−1K̃. The eigenvectors of A provide new intrinsic
coordinates for the data points on the manifold.

A challenge of using the eigenfunctions of a Laplace operator
to parameterize the manifold on which the data lie is the
existence of “repeated” coordinates, that is, coordinates which

parameterize an already discovered direction along the manifold,
referred to as harmonics (Dsilva et al., 2018). These harmonics
provide no additional dimensional information, and should
be ignored in an effort to discover a minimal embedding.
A systematic computational method has been developed for
automatically identifying such harmonics via a local linear
regression on the eigenfunctions (Dsilva et al., 2018).

Before the local linear regression method can be applied,
the eigenfunctions of the Laplace operator must be sorted by
their corresponding eigenvalues, all of which are real, from
greatest to smallest. The main idea behind the local linear
regression method is that the repeated eigenfunctions, the
harmonics, can be represented as functions of the fundamental
eigenfunctions, which correspond to unique directions. The local
linear regression method checks for this functional relationship
by computing a local linear fit (3) of a given eigenfunction φk ∈

R
d (where d is the number of data points) as a function of the

previous eigenfunctions8k−1 = [φ1 · · ·φk−1]
T(those previously

discovered) for each data index i.

φk(i) ≈ αk(i)+ β
T
k (i)8k−1(i) (3)

The coefficients of the fit, αk(i) ∈ R and βk(i) ∈ R
k−1, vary

over the domain (indexed by the data points i) and are found by
solving the following optimization problem (4).

αk(i),βk(i) = argmin
α,β

∑

j 6=i

K(8k−1(i),8k−1(j))(φk(j)

− (α + βT8k−1(j)))
2 (4)

The weighting kernel K for the local linear regression (4) is
responsible for the domain dependence of the coefficients and is
typically Gaussian (Dsilva et al., 2018), such as in (5). For example

K(8k−1(i),8k−1(j)) = exp

(
−
‖8k−1(i)−8k−1(j)‖

2
2

ǫ2reg

)
, (5)

where ǫreg is a tunable scale for the kernel of the regression.
Choosing ǫreg to be one third of the median of the pairwise
distances between the eigenfunctions 8k−1(i) is recommended
as a starting point (Dsilva et al., 2018).

The quality of the fit is assessed by the normalized leave-one-
out cross-validation error (6) or the residual rk of the fit. Values of
the residual near zero indicate an accurate approximation of φk
from 8k−1, indicative of a harmonic eigenfunction, while values
near one correspond to a poor fit, and are therefore suggestive
of a significant, informative eigenfunction corresponding to a
new direction in the data. Thus, by computing residual values
for a collection of the computed eigenfunctions, it is possible to
identify the fundamentals and the harmonics in a systematic way,

rk =

√∑n
i=1(φk(i)− (αk(i)+ βk(i)T8k−1(i)))2∑n

i=1(φk(i))
2

. (6)
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Throughout this paper we employ the DMAPs algorithm to
identify and parameterize manifolds as well as the local linear
regression method to identify the significant, fundamental (non-
harmonic) eigenfunctions. In all cases, we use α = 1 to remove
the influence of the sampling density of the data, and the
Gaussian kernel with the Euclidean distance defined in (2) as our
similarity measure. For the local linear regression, we utilize a
Gaussian kernel (5) and select ǫreg as one third of the median of
the pairwise distances between the8k−1 as our regression kernel
scale, in accordance with Dsilva et al. (2018).

3. GEOMETRIC HARMONICS

Consider a set X sampled from a manifold X̄ ⊂ R
N with finite

measure µ(X) < ∞ for some measure µ. Let us assume that we
have a real valued function F :X → R defined on X. Geometric
harmonics is a tool for extending F to points on the original
manifold X̄, namely, it provides a way to find a new function
f : X̄ → R, which can be considered as an extension of F to X̄
(Coifman and Lafon, 2006b).

The first step of computing the geometric harmonics
extension is to define a kernel k : X̄×X̄ → R, where k need not be
the same as in (2). The kernel must be symmetric and bounded on
the data set. An example of such a kernel is the Gaussian kernel
with the Euclidean distance defined in (2). The main features of
this kernel that are required are: (a) the ability to easily evaluate
it on out-of-sample data points, and (b) that its eigenfunctions
form a basis of a function space. By utilizing these features it is
possible to represent a function in terms of the eigenfunctions of
this kernel (as approximated by the data) and then extend it to
out-of-sample data points.

Consider n data points at which we know the values of the
function of interest, F. We want to approximate F at some m
other, new points by d geometric harmonics. We can construct
a matrix K ∈ R

m×n with entries Kij = k(xi, xj), where xi is an
unknown point, xj is a sampled point with known value of F(xj),
and k is the kernel. The l-th geometric harmonic is defined by

8
(l)
i = 8(l)(xi) =

n∑

j=1

Kijψ
(l)
j λ

−1
l

, (7)

where ψ (l) is the l-th column of the matrix 9 ∈ R
n×d, the

first d eigenfunctions of the kernel matrix, and λl ∈ 3 =

diag(λ1, . . . , λd) ∈ R
d×d is the corresponding eigenvalue. The

extension f of the known function F to the set of new points is
then computed as (Coifman and Lafon, 2006b)

f = K93−19TF. (8)

Any observable of the data (e.g., the phase or the amplitude or
any state variable for each particular oscillator in our network) is
a function on the low-dimensional manifold, and can therefore
be extended out-of-sample through geometric harmonics. This
provides us a systematic approach for translating back-and-forth
between physical observations and coarse-grained “effective” or
“latent space” descriptions of the emergent dynamics.

4. IDENTIFYING COARSE VARIABLES
(ORDER PARAMETERS)

Here we illustrate how manifold learning techniques, in this
case diffusion maps, can be used to identify coarse variables for
coupled oscillator systems directly from time series data. We
consider the simple Kuramoto model with sinusoidal coupling
as a test case, to demonstrate how we can learn a variable that is
equivalent to the typical Kuramoto order parameter, R.

4.1. The Kuramoto Model
The Kuramoto model is a classical example of limit cycle
oscillators that can exhibit synchronizing behavior. The basic
version of the model consists of a number of heterogeneous
oscillators (i = 1, . . . ,N), each with their own natural frequency
ωi, selected from a distribution g(ω), that interact through a
coupling term f . The coupling term is typically sinusoidal and
can be expressed as a function of the difference in phases between
oscillators f (θi − θj).

The strength and presence of coupling among the oscillators
is expressed by the coupling matrix A. Each element of the
matrix Aij (i, j = 1, . . . ,N) is a pairwise strength quantifying the
influence of oscillator j on oscillator i. A general Kuramotomodel
with a sinusoidal coupling function can be written as (9)

dθi

dt
= ωi +

1

N

N∑

j=1

Aij sin(θj − θi) for i = 1, . . . ,N. (9)

Originally, Kuramoto considered a mean-field coupling
approximation (Strogatz, 2000), Aij = K > 0 where K is a global
coupling constant, which results in the following simplified
all-to-all coupled model

dθi

dt
= ωi +

K

N

N∑

j=1

sin(θj − θi) for i = 1, . . . ,N. (10)

The degree of phase synchronization of the oscillators can be
expressed in terms of the complex-valued order parameter (a
coarse variable) introduced by Kuramoto as follows (Kuramoto,
1984)

R(t)eiψ(t) =
1

N

N∑

j=1

eiθj(t), (11)

where 0 ≤ R(t) ≤ 1 is the time-dependent phase coherence,
and ψ(t) is the average phase. Values of the phase coherence
near one correspond to phase synchronization of the oscillators,
while values near zero imply disorder. An example of the typical
synchronizing behavior of the Kuramoto model is illustrated
for both a stationary reference frame Figure 1A, and a rotating
reference frame Figure 1B. Note that in the rotating frame the
frequency synchronization induces a steady state.

In general, if the coupling is chosen such that the system
exhibits complete synchronization (characterized by the lack
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FIGURE 1 | Time series of N = 4, 000 Kuramoto oscillator phases with coupling that is strong enough to induce complete synchronization. The oscillators experience

a short transient before synchronizing and converging to a steady state. This behavior is depicted for both a stationary frame (A), and a rotating frame (B).

of “rogue” or unbound oscillators), then a steady state exists
in a rotating reference frame. Typically, the rotating frame
transformation is taken to be θi(t) 7→ θi(t)−ψ(t), in which ψ(t)
is the average phase. This transformation results in a system for
which the new average phase is zero, yielding a real-valued order
parameter. The order parameter in this rotating frame is given by

R(t) =
1

N

N∑

j=1

ei(θj(t)−ψ(t)). (12)

Throughout the remainder of this paper we employ the simple
all-to-all coupled Kuramoto model and its variations, some with
more complicated couplings, to illustrate our methodology. We
emphasize the synchronizing behavior of the Kuramoto model
as it facilitates coarse-graining, and repeatedly make use of this
property to simplify our calculations throughout the rest of
the paper.

4.2. Order Parameter Identification
For this section we consider the simple Kuramotomodel with all-
to-all mean-field coupling (10). Our goal is to: (a) first identify
a coarse variable from time series of phase data; and then (b)
demonstrate that this discovered variable is equivalent to the
established Kuramoto order parameter. Throughout, we consider
a rotating frame in which only the magnitude of the order
parameter R varies in time. This in turn enables us to neglect the
angle ψ , as R suffices to capture the time-dependent behavior.

We begin our analysis by simulating 8,000 Kuramoto
oscillators (N = 8, 000) with a coupling constant K = 2, and
frequencies drawn from a Cauchy distribution (13) with γ = 0.5.

g(ω; γ ) =
γ /π

ω2 + γ 2
(13)

In order to reduce the finite sample noise in R, we use inverse
transform sampling, with equally spaced values over the interval
[0 + ǫ, 1 − ǫ] with ǫ ≈ 2.5 × 10−4, to generate our frequencies

in a systematic and symmetric manner. We select ǫ to place a
cap on the maximum absolute value of the frequencies in order
to facilitate numerical simulation. For these parameter values, R
exhibits an attracting, stable steady state with R∞ ≈ 0.71. Thus,
in order to sample the entire range of potential R-values, we
select two different sets of initial conditions for our simulations,
with one “above” the steady state synchronization R value, and

the other “below” it. For the first case, R = 1, we set all of the
initial oscillator phases to π and for the second case, R ≈ 0, we
use equally spaced initial phases over [0, 2π]. In both cases, we

integrate our system of oscillator ODEs with SciPy’s Runge–Kutta
integrator (solve_ivp with the RK45 integrator) with the absolute
and relative tolerances set to 10−7 and 10−4, respectively. After
discarding the initial transients, we transform the phase data into
a rotating frame and then sample it at discrete, equidistant time
steps to form our time series data (Figure 2).

Before applying the DMAPs algorithm to these time series
of phase data to identify a coarse variable, we need to
select a suitable kernel. It is crucial to select a kernel that
will compare the relevant features of the data in order to
produce a meaningful measure of the similarity between data
points. In this case, it is important to choose a kernel that
measures the degree of clustering or equivalently the phase
synchronization of the oscillators in a way that is invariant
to permutations of the oscillator identity, as a relabeling
of the oscillators should correspond to the same degree
of synchronization.

Since the synchronization of the oscillators is related to how
the oscillator phases group together, it is a natural choice to
consider the phase density as a meaningful observable. The
oscillator phase density captures phase clustering while being
permutation independent, and should thus provide a meaningful
similarity measure between system snapshots. Therefore, we first
pre-process the phase data by computing the density of the
oscillators over the interval [−π ,π] before defining the kernel.
We approximate this density with a binning process (histogram)
that uses 200 equally spaced bins over the interval [−π ,π]. As
part of the binning process we are careful to reduce the phases of
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FIGURE 2 | Plot of the magnitude R of the Kuramoto order parameter for our

two simulation trajectories after the rotating frame transformation: (blue) the

trajectory initialized “above” the steady state R value, (orange) the trajectory

initialized “below” the steady state R value. In both cases, the initial fast

transients have already been discarded. The included markers highlight a

subset of the data for clarity and are not representative of the entire data set.

Note that the angle ψ is time-independent in this rotating frame (ψ (t) = 0).

the oscillators mod 2π to ensure that all of them are captured in
the [−π ,π] interval (Figure 3).

Using time series of density data instead of individual phase
data simplifies the comparison of different snapshots, and thus
facilitates the selection of the kernel in the DMAPs algorithm. For
this we select the standard Gaussian kernel with the Euclidean
metric for the comparison of our oscillator density vectors (d ∈

R
200) with diffusion map tuning parameters of α = 1 selecting

the Laplace-Beltrami operator, and ǫ ≈ 1.54 as the kernel
bandwidth parameter. This results in a single diffusion map
coordinate (eigenfunction) that is deemed significant by the local
linear regression method, see Figure 4A.

Comparing this diffusion map coordinate φ1 to the Kuramoto
order parameter R reveals there is a one-to-one correspondence
between the two, as Figure 4B clearly illustrates: the plot is
monotonic, and its derivative remains bounded away from zero
and from infinity. This means that the diffusion map coordinate
contains the same information as the established Kuramoto order
parameter, and therefore constitutes a suitable coarse variable
for this system. This is particularly interesting as we managed
to identify this variable directly through manifold learning on
the minimally pre-processed phase data, without referencing
Kuramoto’s order parameter. In this way, we have demonstrated
a process that “learns” bespoke coarse variables, circumventing
the traditional discovery/invention process.

While this process is both systematic and automated,
we must point out that the key step in this process, the
choice of the relevant features of the data, still requires a
modicum of insight. Different choices of the relevant features
of the data, either through pre-processing and/or selection of
the kernel, will produce different coarse variables, that may
well be “reconcilable,” i.e., one-to-one with each other and
with R.

FIGURE 3 | Normalized oscillator densities of the Kuramoto oscillator phases

sampled at equal time intervals from the two simulation runs. The densities are

colored by whether they originated from the simulation run that began

above/below the steady state (blue/orange) R- value, and sorted by their

corresponding value of R (computed from their phases). All of the densities are

computed from a histogram with 200 bins.

5. LEARNING THE DYNAMIC BEHAVIOR
OF DATA-DRIVEN COARSE VARIABLES
WITH NEURAL NETWORKS

Once descriptive coarse variables have been identified, it is
desirable to find descriptions of their behavior (evolution laws,
typically in the form of ordinary or partial differential equations,
ODEs or PDEs). However, finding analytical expressions for
these descriptions (“laws”) is often extremely challenging, if not
practically infeasible, and may rely on ad hoc methods. The
process used to learn the analytical equations that describe the
behavior of the Kuramoto order parameter in the continuum
(infinite oscillator) limit exemplifies these types of difficulties
(Ott and Antonsen, 2008). As a result of this process, Ott
and Antonsen showed that the continuum limit of the all-
to-all coupled Kuramoto model (10) admits an attracting,
invariant manifold. For Cauchy distributed frequencies, the
conservation PDE governing the oscillator density can be
analytically transformed into a pair of ODEs that describe
the time evolution of the Kuramoto order parameter along
this manifold,

dR

dt
= −γR+

KR

2
(1− R2)

dψ

dt
= 0,

(14)

where R, ψ , K, and γ are the phase coherence, average
phase, coupling constant, and Cauchy distribution parameter,
respectively, with t as time. As this manifold is invariant and
attracting, the dynamics of the order parameter can be accurately
described by these equations after a short initial transient.
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FIGURE 4 | (A) Eigenvalues of the diffusion map operator on the oscillator density dynamic data, sorted in decreasing order and colored by the corresponding

residual value produced by the local linear regression algorithm. The first eigenfunction φ1 suffices to parameterize the behavior. (B) A plot demonstrating the

correspondence between the discovered diffusion map coordinate φ1 and the magnitude of the typical Kuramoto order parameter R. It clearly shows the one-to-one

correspondence between the two, verifying that the diffusion map coordinate is an “equivalent” coarse variable to R for this system.

In the following sections, we present an alternative, data-
driven approach to learning the behavior of coarse variables
directly from time series of observational data. As part of this
approach we make use of a recurrent neural network architecture
“templated” on numerical time integration schemes, which
allows us to learn the time derivatives of state variables from flow
data in a general and systematic way. We illustrate this approach
through an example in which we learn the aforementioned ODEs
(14) that govern the behavior of the Kuramoto order parameter
in the continuum limit from data. We then compare the result of
our neural network based approach to standard finite differences
complemented with geometric harmonics. Throughout this
example we only observe the magnitude of the order parameter
R and neglect the angleψ , as the magnitude captures the relevant
synchronization dynamics of this model.

5.1. A Neural Network Based on a
Numerical Integration Scheme
Numerical integration algorithms for ODEs rely on knowledge
of the time derivative in order to approximate a future state.
If an analytical formula for the time derivative is not available
or unknown, it can be approximated from time series of
observations through, say, the use of finite differences, with
known associated accuracy problems, especially when the data
is scarce. Here, we discuss an alternative, neural network based
approach to learning time derivatives (the “right hand sides” of
ODEs) from discrete time observations.

Artificial neural networks have gained prominence for their
expressiveness and generality, and especially for their ability to
model non-linear behavior. These qualities have led to their
widespread adoption and use in areas as diverse as image
(Simonyan and Zisserman, 2014) and speech recognition (Graves
et al., 2013), financial modeling and prediction (Guresen et al.,
2011), and general game playing (Silver et al., 2016; Vinyals
et al., 2017). For the approximation of dynamical systems,

neural networks have been used for tasks such as the accurate
approximation of functions and their derivatives (Cardaliaguet
and Euvrard, 1992), system identification and control (Narendra
and Parthasarathy, 1990; Subudhi and Jena, 2011), and system
modeling (Chow and Li, 2000). A variety of network architectures
have been studied for the analysis of dynamical systems,
such as feedforward networks (Rico-Martinez et al., 1992),
recurrent networks (Chow and Li, 2000), high-order networks
(Kosmatopoulos et al., 1995), and multistep networks (Raissi
et al., 2018), along with novel training approaches such as
the differential evolution approach (Chow and Li, 2000). Here
we focus on a feedforward stepping approach, whose utility
for accurately modeling system dynamics has been previously
demonstrated (Rico-Martinez et al., 1992; Raissi et al., 2018).

This feedfoward approach is a method for approximating
the functional form of the right-hand-side of systems modeled
through autonomous ODEs (Rico-Martinez et al., 1992; Rico-
Martınez et al., 1995; Rico-Martinez and Kevrekidis, 1993). The
crux of the approach is to approximate the time derivative
of the system with a feedforward (and here, a recurrent)
neural network. This neural network approximation can then

be used in place of a first-principles based right-hand-side
in any initial value solver, such as the Euler or Runge–Kutta

methods, to produce a new, neural network based time-stepper
(Rico-Martınez et al., 1995). In other words, a neural network

architecture templated on a numerical time-stepping processes
can be trained to learn an approximation of the right-hand-side
of the system equations from pairs of inputs and outputs, where
the input is the state y(t) at time t and the output is y(t + 1t)
at time t + 1t. By training such a neural network architecture
on pairs of state variable observations, (y(t), y(t + 1t)), a part
of the neural network learns an approximation of the right-
hand-side of the evolution equation. This is a surrogate model,
which subsequently, using any good integration algorithm, can
produce a flow that closely matches the training data. Following
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successful training, an estimate of the right-hand-side of the
evolution equation for any out-of-sample initial system states can
be easily accessed by evaluating the neural network directly for
these system states.

In addition to its application to learning the right-hand-sides
of systems of ODEs, this type of neural network architecture
can also be extended to learn the right hand sides of PDEs
discretized as systems of ODEs through a method of lines
approach (Gonzalez-Garcia et al., 1998). While any explicit
integration algorithm that only requires knowledge of the right-
hand-side can be used to devise acceptable neural network
architectures for learning unknown evolution equations, we will
focus here on the fourth order Runge–Kutta algorithm for our
analysis and computations.

A schematic of the feedforward recurrent neural network
architecture we construct templated on a fourth order, fixed-step
Runge–Kutta algorithm is illustrated in Figure 5. An important
feature of this method with the Runge–Kutta algorithm is that the
“black box” neural network evaluating f (a recurrent component
of the overall network architecture) is shared between all of the
stages of the algorithm (k1, k2, k3, k4). That is, there is a single
copy of the neural “sub”-network f that is evaluated multiple
times per time step with different inputs as required by the
Runge–Kutta algorithm in order to produce the output.

In the following section, we use this Runge–Kutta scheme to
learn the ODE governing the behavior of the magnitude of the
Kuramoto order parameter R in a data-driven way.

5.2. Generating the Flow (Training) Data
As discussed in the previous section, we need to generate
pairs of flow data of the coarse variable, (R(t),R(t + 1t)),
in order to train the neural network based approach. We
begin by considering 2,000 unique (different initial phases
and frequencies) simulations of the simple all-to-all coupled
Kuramoto model (10) with 8,000 oscillators (N = 8, 000)
with a coupling constant K = 2, and independently sampled
frequencies ωi drawn from a Cauchy distribution with γ = 0.5.

One of the difficulties of generating flow data for the order
parameter is adequately sampling the entire range of R ∈ [0, 1].
As the order parameter is not a quantity that we are directly
simulating, and instead depends on the phases of the oscillators
in a complex way, it is difficult to consistently initialize flows to
arbitrary values of R. We surmount this difficulty by means of an
initialization integration approach. This initialization approach
consists of initializing each of the unique oscillator simulations to
easily expressed order parameter values, either R ≈ 0 (uniformly
distributed random initial phases on [0, 2π]) or R = 1 (identical
initial phases), and then integrating them for different amounts of
time to produce a set of 2,000 variegated starting points for our
R-flow data, R(t). These points are the final points of the black
initialization trajectories shown in Figure 6A and are marked by
orange stars. By judiciously selecting the integration times, it is
possible to produce a set of initial points R(t) that covers the
entire range of possible R-values nearly uniformly, see Figure 6B.

After generating the starting points of the flows R(t) with this
initialization approach, we proceed to produce the corresponding
end points R(t + 1t) through a detailed time integration of the

oscillator phases. This process consists of first integrating the
oscillator phases corresponding to R(t) forward in time for a
chosen time step 1t, and then computing the order parameter
for the resulting new phases. We select two different reporting
time horizons for this integration, 1t = 0.01, and 1t = 0.05, to
produce two different sets of flow data to assess the sensitivity of
our method to the flow time. For all of these simulations, we use
Scipy’s Runge–Kutta integrator (solve_ivp with the RK45 option)
to perform the time integration.

This entire process results in two collections of training
data, each consisting of 2,000 pairs of the form (R(t),R(t +

1t)), with one collection for each choice of 1t. Each of these
collections is used individually in the following section to train
our neural network to approximate the right-hand-side of the
coarse evolution equation for R(t).

5.3. Training the Neural Network Scheme
Our neural network architecture is based on a standard
fixed step-size, fourth order Runge–Kutta integration algorithm
complemented with a feedforward neural network with 3 hidden
layers of 24 neurons each, Figure 5. We initialize our network
with a uniform Glorot procedure (Glorot and Bengio, 2010)
for the kernels, and zeros for the biases. For training, we use
TensorFlow’s Adam optimizer (Kingma and Ba, 2014) with a
learning rate of 10−3 and a mean squared error loss on the final
flow point R(t + 1t) with full batch training (all of the training
data used in each training epoch).

We train one neural network for each time horizon data
set, 1t = 0.01, 0.05, to investigate the sensitivity of the right-
hand-side estimation to the flow time. In each case we use a
split of 10% of the data for validation and 90% of the data
for training to check for overfitting and proceed to train the
network with full batch training (batches of 1,800 data points)
until we reach a sufficiently small loss value (10,000 epochs in
total), Figures 7A,B. As Figures 7C,D shows, the different time
steps behave similarly with minimal deviation from the analytical
values, indicating a low sensitivity to the time step for this
range of values. The gray points in Figure 7C are forward Euler
approximations of the time derivative of the order parameter that
are computed from the flow data generated with 1t = 0.01.
These points reveal the scatter in the data, as noted in Figure 6A,
and illustrate the power of the neural network time-stepping
process to regress the data and average out the noise to find what
can be thought of as an expected value (over oscillator ensemble
realizations) of the time derivative. To provide a comparison
between finite difference time-derivative estimates and our neural
network based approach, we compute a geometric harmonic
interpolation of the Euler approximations with 10 geometric
harmonics and include the result in Figure 7C.

As an added point of comparison between our neural network
right-hand-sides and the analytical expression, we integrate flows
for a variety of initial conditions with both of the neural network
approximated right-hand-sides and the analytical (theoretical,
infinite oscillator limit) right-hand-side. As Figure 8 illustrates,
the neural network equations produce flows that both closely
match the analytical solution over the majority of the R-domain
and converge to the correct steady state. Thus, the neural network
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FIGURE 5 | The neural network approach for learning unknown ODE right-hand-sides templated on a fourth order, fixed-step Runge–Kutta numerical integration

algorithm. The neural “sub”-network f is reused for each stage of the integration algorithm in order to compute the loss function and train the network.

FIGURE 6 | (A) A plot of our initialization trajectories (in black) vs. the expected continuum limit solution (in red). The end point of each black trajectory, denoted by an

orange star, corresponds to a value of R(t) that is used as a starting point for the flow training data. The noise evident in the simulated trajectories is caused by both

randomness in the frequencies (each trajectory is a different sample from the distribution), and randomness in the arrangement of the oscillators with respect to their

frequencies (only for the R ≈ 0 starting condition). (B) The approximately uniform sampling of the initial R-values R(t) used for flow generation. Note that a uniform

distribution is not required, however it is desirable to facilitate training. It is only necessary that the values cover the range of R-space in order to allow us to learn the

ODE over the entire [0, 1] domain.

approach successfully learns an accurate approximation of both
the behavior and the governing ODEs of the Kuramoto order
parameter in the continuum limit.

One of the greatest utilities of this approach is its generality,
which enables it to be applied to cases in which analytical
approaches have not yet been devised, or may not be practical.
Throughout the previous example we assumed knowledge of
the coarse variable, the Kuramoto order parameter, and learned
its governing ODEs. However, it is important to realize that
this same technique can also be applied to our “discovered”
coarse variables, that we identified earlier in this paper through
manifold learning techniques. In this way, this methodology
allows one to both identify the descriptive coarse variables and
learn their behaviors (ODEs) in a general, data-driven way
that is tailored to the specific problem by the nature of the
technique. We conclude this section with a demonstration of
such an application.

Following the same methodology outlined in the “Order
Parameter Identification” section, we combine the phase data
corresponding to the two (R(t),R(t + 1t)) data sets used earlier
in this section and then bin the oscillator phases for each time
point to produce oscillator density data points. As before, we use
this oscillator density data as the input to the DMAPs algorithm
with a Gaussian kernel with the Euclidean distance and find that
it is described by a single significant eigenfunction, as determined
by the local linear regression method. Figure 9 illustrates the
nearly one-to-one mapping between this discovered diffusion
map coordinate and the analytical order parameter R. Following
our discovery of a coarse variable, we then use the neural
network process outlined earlier in this section to approximate
the evolution law (the right-hand-side of the unknown ODE) for
our discovered, diffusion map coarse variable φ1.

By keeping track of the φ1 values corresponding to theR values
for each data set, we form two sets of pairs of training data as
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FIGURE 7 | The training and validation loss of the neural network training for: (A) the 1t = 0.01 time horizon, and (B) the 1t = 0.05 time horizon. (C) Plots of the

learned, neural network right-hand-side for two different time horizons (blue, purple) and the analytically derived right-hand-side (orange). A forward Euler

approximation (black) and its geometric harmonic interpolation (green) are included for comparison. (D) The error behaves similarly for both time horizons, with a

magnitude < 0.01 for the entirety of the domain.
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FIGURE 8 | Plots of trajectories generated from the learned, neural network,

evolution law right-hand-side (blue, purple) vs. the analytically known evolution

law (orange). The learned trajectories exhibit nearly identical behavior to the

analytical trajectories and, importantly, converge to the correct steady state.

before, (φ1(t),φ1(t+1t)), with one for each value of1t, but now
in the manifold learning derived variable φ1. Using an identical
procedure to the one used to learn the right-hand-side of the R
equation, we define a feedforward neural network with 3 hidden
layers of 24 neurons each and use it to approximate the time
derivative of φ1 in an architecture templated on a fixed step-
size, fourth order Runge–Kutta algorithm. As before, we initialize
this neural network integration procedure with a uniform Glorot
procedure for the kernels, and zeros for the biases. We define
the loss to be the mean squared error on the final point of the
training flow and then train the network with full batch training
with the Adam optimizer with a learning rate of 10−3. Figure 10
illustrates the result of this training procedure for each time
step. As before, we include the forward Euler approximation
of the φ1 time derivative for 1t = 0.01 and its geometric
harmonic interpolation with 10 geometric harmonics as a point
of reference.

Our recurrent, integrator-based neural network architecture,
appears to successfully learn the evolution equation for φ1 over
the domain. However, the fit does not appear to be as accurate
as the one found for R itself. Furthermore, this training required
50,000 epochs to reach this level of accuracy compared to the
10,000 used for R. We argue that both the difficulty in training
and the lower quality of this fit can be attributed to the bias
in sampling introduced by the non-uniform sampling in our
diffusion map coordinate, demonstrated by the accumulation
of the black data points in Figure 10. Earlier we noted that
we took great care to produce training data sets that sample
the R domain in a nearly uniform fashion, Figure 6B. As
demonstrated by Figure 9, the mapping from R to φ1 is one-
to-one, but does not preserve the shape of the sampling density
due to its non-linearity, leading to a bias in the sampling of
the φ1 domain. However, despite this bias, the neural network
procedure manages to learn a time derivative near the visual
average of its observed Euler approximation.

To summarize, we have shown how our order parameter
identification method can discover a coarse variable that

FIGURE 9 | The coarse variable identified by our manifold learning procedure

applied to data generated in this section. Only the single coarse coordinate φ1
was deemed significant by the local linear regression method. Even in the

presence of noisy data, there is nearly a one-to-one map between the

discovered coordinate φ1 and the analytical order parameter R.

shows good agreement (i.e., is one-to-one) with a known
analytical variable, even in the case of non-ideal, noisy data.
Furthermore, we have demonstrated that even with biased
sampling, our recurrent, integrator templated neural network
architecture is capable of successfully learning the right-hand-
side of the evolution of our discovered coarse variable, effectively
smoothing its Euler finite difference estimates, and certainly
closely approximating the correct steady state.

6. IDENTIFYING “EFFECTIVE”
PARAMETERS

Up to this point we focused on coarse-graining (reducing the
dimension) the system state variables required to formulate an
effective dynamic coupled oscillator model. Often, however,
complex systems whose dynamics depend explicitly on
several parameters can also admit a reduced set of parameter
combinations (or “effective” parameters) that depend on the
full set of parameters in complex, non-linear ways. Finding
these reduced sets of parameters often requires insight, along
with trial and error. Here, we present a methodology for
discovering such effective parameters in a data-driven way
via a modification of diffusion maps, our manifold learning
technique of choice in this paper (Holiday et al., 2019). A strong
motivation for this work comes from the determination of
explicit dimensionless parameters from the (possibly long) list of
dimensional parameters of a physical model.

Throughout this section we investigate variations of the
Kuramoto model and show how DMAPs can be used to
discover effective parameters that accurately describe the phases
of Kuramoto oscillators when synchronized (at steady state in
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FIGURE 10 | The learned evolution law (ODE right-hand-side) of our discovered order parameter φ1 for each reporting time horizon. The steady state of this system in

these coordinates is highlighted in red. A forward Euler approximation (black) and its geometric harmonic interpolation is included to provide a point of comparison

and to highlight the scatter in the data.

a rotating frame). The general idea is to use an output-only
informed kernel for the diffusion map. With this approach, we
only consider the outputs of the system, here steady state phase
data, as the input to the DMAPs algorithm/kernel computation
and neglect the values of the oscillator parameters, which embody
the heterogeneity of the oscillator ensemble. This allows us
to discover the intrinsic dimensionality of the state space at
synchronization, independent of the detailed list of system
parameters. The significant eigenfunctions provided by DMAPs,
as determined by the local linear regression method, serve as new
coordinates for the state space, that is, their values completely
determine the values of the state variables at steady state (16).

θ∞(p) Original analysis (15)

θ∞(φ) Diffusion map coordinate(s) (16)

p 7→ φ New “effective” parameter(s) (17)

Since these effective coordinates describe the variability of the
steady state variables (which depend on the detailed system
parameters), the eigenfunctions themselves provide a new, data-
driven set of effective parameters for the model. If fewer
eigenfunctions are required to describe the steady state space
than there are original parameters, then these eigenfunctions
furnish an effective reduced set of parameters. Once such data-
driven effective parameters are found, they can be compared to
the original parameters through regression to determine how
they are related (17). We illustrate this methodology through a
series of examples.

6.1. A Simple Example: The Kuramoto
Model With Heterogeneous Coupling
Coefficients
We begin by considering a simple variation of the Kuramoto
model in which we include the coupling constant Ki as an
oscillator heterogeneity in addition to the frequencies ωi. The
governing equations for this model are

dθi

dt
= ωi +

Ki

N

N∑

j=1

sin(θj − θi), for i = 1, . . . ,N. (18)

Similar to the typical Kuramoto model, the phase
synchronization of the oscillators can be described with the
usual complex-valued order parameter

Reiψ =
1

N

N∑

j=1

eiθj . (19)

As with the typical Kuramoto model, this variation
admits a steady state in a rotating frame if there is
complete synchronization.

Our goal for this model is to show that even though there
are two model heterogeneities, (ωi,Ki), the steady state phases
can be described by a single “effective” parameter. That is, we
will demonstrate that there is a new parameter that depends on
both of the original two parameters, such that the steady state
oscillator phases only depend on this single combination of the
original parameters.
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In order to find this effective parameter, we apply the
DMAPs algorithm to the steady state phase data with an
output-only informed kernel. This means that our observations
consist solely of the output of the model, here the steady
state phases of the oscillators θi,∞ = θi(t∞) (where t∞
is a time after which the oscillators have reached a steady
state), and ignore the oscillator heterogeneities (ωi, Ki). We
use the eigenfunctions provided by the DMAPs algorithm to
define a change of variables for the parameter space (ω,K).
As we show, only a single eigenfunction φ1 is required to
describe the phase data. Thus, this change of variables is a
many-to-one map and provides a reduction from the two
original parameters (ω,K) to the single effective parameter,
φ1.

(ω,K) 7→ θ∞ ∈ R Original analysis (20)

φ1(ω,K) 7→ θ∞ ∈ R Diffusion map coordinate (21)

For our simulations we consider 1,500 oscillators (N = 1, 500)
with uniformly randomly distributed initial phases over [0, 2π],
uniformly randomly distributed frequencies over [−π ,π],
and uniformly randomly distributed coupling coefficients over
[10, 100]. We select these parameter values as they lead to
complete synchronization, and hence a steady state in a rotating
frame. We integrate the oscillators with Scipy’s vode integrator
until they achieve complete synchronization, and then transform
the phases into a rotating frame.

Next, we apply the DMAPs algorithm to the steady state
phases with a Gaussian kernel with the Euclidean distance and
parameters of α = 1 for the Laplace-Beltrami operator and
ǫ = 0.5 for the kernel bandwidth parameter. The kernel is
given by

Kij = exp

(
−
‖xi − xj‖

2
2

ǫ2

)
i, j = 1, . . . , 1500, (22)

where ‖ · ‖2 is the Euclidean norm in the complex plane1 of 1500
oscillator phases, e.g., xj = eiθj(t∞).

We use the local linear regression method to verify that
only a single diffusion map eigenfunction φ1 is required to
represent this phase data, resulting in a single, data-driven
effective parameter. A coloring of the original, two-dimensional
parameter space (ω,K) by this eigenfunction is shown in
Figure 11A, demonstrating the many-to-one character of the
diffusion map coordinate map.

Due to the simplicity of this model it is also possible to find an
effective parameter analytically. Multiplying the order parameter

1It is necessary to map the oscillator phases to the complex plane to avoid the

unfortunate occurrence of the phases lying across the branch cut of the multi-

valued argument function. Taking the Euclidean norm of the difference between

oscillator phases in this situation would result in the DMAPs algorithm incorrectly

identifying two different clusters of oscillators split across the branch cut instead

of a single group. By first mapping the phases to the complex plane and then

computing the distances there, we avoid this possibility and correctly identify a

single group of oscillators.

by e−iθi , taking the imaginary part, and substituting the result into
the model equations yields

dθi

dt
= ωi + (RKi) sin(ψ − θi), (23)

which under steady state conditions yields an effective parameter

θi,∞ = ψ + arcsin

(
ωi

RKi

)
. (24)

As a validation of our data-driven approach, we compare our
data-driven parameter φ1 to the analytical one (24). In Figure 11

we show the parameter space colored by (a) our data-driven
parameter φ1, (b) the analytical parameter, and (c) the steady
state phases. As the figure illustrates, the colorings are similar
suggesting that our data-driven parameter is indeed an equivalent
effective parameter for this model.

This is confirmed by the plot in Figure 11D, which
clearly illustrates the invertible relationship between the data-
driven parameter and the analytically obtainable parameter
combination. Thus, our data-driven approach is able to discover
an equivalent effective parameter for this model. Combinations
of the original parameters that yield the same steady state
synchronized phase can be found as level sets of the eigenfunction
φ1 in (ω,K) space.

6.2. A Three-Parameter Example: The
Kuramoto Model With Firing
We now consider a modification to the Kuramoto model in
which we additionally incorporate a “firing term” with coefficient
αi to the coupling strengthKi, and frequencyωi of each oscillator.
This model was originally introduced tomodel excitable behavior
among coupled oscillators. If |ωi/αi| < 1 and Ki = 0,
each oscillator exhibits two steady states, one stable and one
unstable. A small perturbation of the stationary, stable solution
that exceeds the unstable steady state induces a firing of the
oscillator, which appears as a large deviation in phase before a
return to the stable state (Tessone et al., 2007, 2008). The model
equations for this variation are provided below.

dθi

dt
= ωi + αi sin(θi)+

Ki

N

N∑

j=1

sin(θj − θi) (25)

Similar to the typical Kuramoto model, one can express the
degree of phase synchronization among the oscillators with the
Kuramoto order parameter,

Reiψ =
1

N

N∑

j=1

eiθj . (26)

Transforming the model equations in the same way as those of
the Kuramoto model with heterogeneous coupling coefficients
(18) studied earlier results in
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FIGURE 11 | (A) The parameter space (ω,K) colored by the diffusion map coordinate φ1. (B) The parameter space (ω,K) colored by the analytical parameter (24). (C)

The parameter space (ω,K) colored by the steady state phase θ∞. (D) A comparison between the data-driven parameter and the analytically derived effective

parameter. The one-to-one mapping between the two verifies their equivalence.

dθi

dt
= ωi + αi sin(θi)+ (RKi) sin(ψ − θi), (27)

which under steady state conditions yields

2RKi

αi
sin(ψ) sin2

(
θi

2

)
+

(
RKi cos(ψ)

αi
− 1

)
sin(θi)

=
RKi

αi
sin(ψ)+

ωi

αi
. (28)

Now considering a rotating reference frame, in which ψ is
constant, we set ψ = 0 for convenience yielding

(
RKi

αi
− 1

)
sin(θi) =

ωi

αi
. (29)

By the above manipulations, it is now clear that the steady state
phases θi,∞ are a function of Ki/αi and ωi/αi, meaning that this
system can be analytically described by two combinations of the
original parameters. We now employ our data-driven approach
to discover the effective parameter(s).

We begin by simulating this model using Scipy’s vode
integrator with N = 1, 500 oscillators, αi uniformly randomly
sampled in [−2, 2], Ki uniformly randomly sampled in [10, 100],
and ωi uniformly randomly sampled in [−π ,π]. We select these
parameter values to ensure complete synchronization of the

oscillators and hence a steady state in a rotating frame. As with
the Kuramoto model with heterogeneous coupling coefficients,
we transform the phases into a rotating frame and apply the
DMAPs algorithm with an output-only informed kernel to the
complex transformed steady state phases. We select diffusion
map parameters of α = 1, and ǫ = 0.9 and find that a single
diffusion map coordinate φ1 is identified by the local linear
regression method, giving rise to a single effective parameter.

This parameter is a non-linear combination of all three
original parameters (ω,K,α), as we illustrate in Figure 12, which
shows the three-dimensional parameter space colored by the level
sets of the single significant diffusion map coordinate. Thus,
this model admits a reduction of the three original parameters to
a single effective parameter φ1, which is itself a combination of
the three original system parameters (ω,K,α). The relationship
between the system parameters and φ1 can be subsequently
explored, if desired, through standard regression techniques.

6.3. A More Complicated Example: The
Kuramoto Model With Chung-Lu Coupling
Here, we showcase our data-driven parameter discovery process
for systems with more complicated couplings. Instead of the all-
to-all coupled model considered by Kuramoto (10), we consider
a general Kuramoto model (9) with Chung-Lu type coupling
between oscillators (Chung and Lu, 2002). The connection
probability between oscillators for a Chung-Lu network is
given by
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FIGURE 12 | The level surfaces of the significant eigenfunction φ1 of the

output-only informed diffusion map kernel in the 3D parameter space of the

Kuramoto model with firing. These level surfaces were found with the

marching cubes algorithm (Lorensen and Cline, 1987).

Pij = Pji = min

(
wiwj∑
k wk

, 1

)
, (30)

where wi is a sequence of weights defined by

wi = Np

(
1− q(i− 1)/N

)r
i = 1, 2, . . . ,N, (31)

for network parameters p, q, and r. Multiple Chung-Lu networks
can be generated from the same parameter values, with a
specific network corresponding to generating an adjacency
matrix from the connection probabilities Pij defined by the
network parameters through the sequence of weights wi.

One of the special properties of the Kuramoto system with
a Chung-Lu coupling is that when a steady state exists in a
rotating reference frame, the steady state phases of the oscillators
θi lie on an invariant manifold (Bertalan et al., 2017), which
can be parameterized by two heterogeneities: the frequency of
the oscillators ωi, and a network property called the degree
κi, as depicted in Figure 13A. This property was observed to
hold for many Chung-Lu networks generated from a given
set of parameters. We now show how the effect of both of
these heterogeneities can be succinctly expressed by a single
“effective” parameter.

Throughout the remainder of this section we consider a
collection of 4,000 oscillators (N = 4, 000) with uniformly
randomly distributed frequencies ωi over the range [0, 1] that
are coupled together in a Chung-Lu network with a coupling
constant of K = 20 (multiplying the adjacency matrix), and
network parameters of p = 0.5, q = 0.9, and r = 0.5.
Figure 13B shows the degree distribution of a sampling of a
Chung-Lu network with these parameter values. We are careful
to select our coupling constant large enough to ensure complete
synchronization for these parameter values, and hence a steady
state in a rotating frame that can be described in terms of the
heterogeneities ω, and κ .

After our parameter selection, we integrate the oscillators in
time with SciPy’s Runge–Kutta integrator (solve_ivp with RK45)
until they reach a steady state in a rotating reference frame.

Now we show that, although there are two heterogeneity
parameters, (ωi, κi), the long term behavior of the Kuramoto
oscillators with a Chung-Lu network is intrinsically one
dimensional, and can be described by a single effective parameter,
which itself is a, possibly non-linear, combination of the original
system parameters.

(ω, κ) 7→ θ∞ Original analysis (32)

φ 7→ θ∞ Diffusion map outcome (33)

In order to find this effective parameter, we begin by applying
the DMAPs algorithm to the complex transformed steady state
phase data with an output-only informed kernel. As mentioned
before, this means that our observations consist solely of the
steady state phases of the oscillators θi,∞, and ignore the
oscillator heterogeneities (ωi, κi). For our diffusion maps we use
α = 1 for the Laplace-Beltrami operator, a kernel bandwidth
parameter of ǫ ≈ 2.3 ∗ 10−2, and the Gaussian kernel with the
Euclidean distance

Kij = exp

(
−
||xi − xj||

2
2

ǫ2

)
i, j = 1, . . . , 4000, (34)

where ‖ · ‖2 is the Euclidean norm in the complex plane of 4,000
oscillator phases, i.e., xj = eiθj(t∞).

Next, we use the local linear regression method to determine
that there is a single significant eigenfunction, φ1. Figure 13C
shows that this eigenfuction is one-to-one with the steady state
phases of the oscillators in a rotating frame, and thus provides
an equivalent description of the steady state behavior of this
system. Therefore, the synchronized phases of this system can
be accurately described by the single effective parameter φ1,
as claimed.

The relationship between the original parameters and the
DMAPs parameter is illustrated by Figure 14A, which depicts a
coloring of the original parameter space with φ1. In this figure
one can observe that there are multiple combinations of the
original parameters that correspond to the same value of φ1 and
hence the same steady state phase. The key observation is that
the level sets of φ1 provide the mapping between the original
parameters and the new effective parameter. These level sets
are depicted in Figure 14B, and can be found with established
techniques, such as the marching squares algorithm (Maple,
2003). Thus, by using the DMAPs parameter φ1 we can express
the steady state phases in terms of a single combination of the
original parameters. If necessary/useful, we can try to express
this new effective parameter as a function of the original system
parameters through standard regression techniques, or even
possibly through neural networks (Figure 14C).

To summarize our approach, in each of three examples above
we used DMAPs combined with the local linear regression
method to determine the intrinsic dimensionality of the output
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FIGURE 13 | (A) Invariance of the steady state phases of the Kuramoto model to different Chung-Lu networks. The dependence of the steady state phases on the

model heterogeneities (ω, κ ) for five different Chung-Lu networks generated from the same parameters is depicted, with each network corresponding to a different

color. The overlapping of the differently colored plots illustrates the weak dependence of the steady state phases on the specific Chung-Lu network realization. (B) The

degree distribution of a sampling of a Chung-Lu network of N = 4, 000 oscillators with parameters p = 0.5, q = 0.9, and r = 0.5. (C) The significant eigenfunction of

the diffusion map as determined by the local linear regression method plotted against the steady state phases of the oscillators in a rotating frame θi,rotating. There is a

one-to-one mapping between the two, indicating that the steady state phases depend on the single diffusion map coordinate uniquely.

FIGURE 14 | The application of the diffusion map algorithm to the Chung-Lu coupled Kuramoto model with an output-only-informed kernel yields a single significant

diffusion map coordinate, φ1. (A) Coloring the parameter space (ω, κ ) with this new coordinate reveals the relationship between the original parameters and the

“effective” diffusion map parameter. (B) Level sets of the significant diffusion map coordinate φ1 in the original parameter space (ω, κ ). These level sets were found by

means of the marching squares algorithm (Maple, 2003). A functional form of the mapping between parameters and the diffusion map coordinate could be found with

typical regression techniques or by using machine learning techniques like neural networks. (C) Coloring the parameter space with the steady state phases produces

a coloring similar to the one in (A) as there is a one-to-one map between θ and φ1.

space. The significant eigenfunctions that we obtained from
this process provided new coordinates for the output space
and can be considered as the “effective” parameters of the
system. If there are fewer significant DMAPs eigenfunctions than
original parameters, then this change of variables also provides a
reduction in total necessary parameters.

7. DISCUSSION AND FUTURE WORK

Throughout this paper we have presented a data-driven
methodology for discovering coarse variables, learning their
dynamic evolution laws, and identifying sets of effective
parameters. In each case, we used either an example or a series of
examples to demonstrate the efficacy of our techniques compared
to the established analytical technique and, in each case, the
results of our data-driven approach were in close agreement with
the established methodology.

Nevertheless, it is important to consider the interpretability
(the “X” in XAI, explainable artificial intelligence) of the data-
driven coarse variables discovered in our work. Even when
performing model reduction with linear data-driven techniques,
like Principal Component Analysis, it is difficult to ascribe a

physical meaning to linear combinations of meaningful system
variables (what does a linear combination of, say, a firing
rate and an ion concentration “mean”?). The conundrum is
resolved by looking for physically meaningful quantities that,
on the data, are one-to-one with the discovered data-driven
descriptors, and are therefore equally good at parametrizing the
observations. One hypothesizes a set of meaningful descriptors
and then checks that the Jacobian of the transformation from
data-driven to meaningful descriptors never becomes singular
on the data (see Sonday et al., 2009; Frewen et al., 2011; Kattis
et al., 2016; Rajendran et al., 2017; Meila et al., 2018 for further
discussion).

With that said, we believe that our techniques offer an
approach that is both general and systematic, and we intend
to apply it to a variety of coupled oscillator systems. One
such problem that we are currently investigating is the possible
existence, and data-driven identification, of partial differential
equation (PDE) descriptions of coupled oscillator systems.
Such an alternative coarse-grained description would confer
the typical benefits associated with model reduction, such
as accelerated simulation and analysis; it will also present
unique challenges: for instance, the selection of appropriate
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boundary conditions for such a data-driven PDE model of
coupled oscillators.

As we remarked in our discussion of the integrator-based
neural network architecture, there is an extension of the
ODE neural network approach that allows one to learn PDEs
discretized by the method of lines approach (Gonzalez-Garcia
et al., 1998). We plan to leverage this capability to discover PDE
descriptions of coupled oscillator systems, such as the simple
Kuramoto model in the continuum limit as well as of networks
of Hodgkin–Huxley oscillators.

Utilizing the properties of the continuous form of the
Kuramoto model, one can express the time- and phase-
dependent oscillator density F(θ , t) as an integral of the
conditional oscillator density with respect to the frequency.

F(θ , t) =

∫ ∞

−∞

ρ(θ |ω; t)g(ω)dω (35)

As we pointed out earlier, Ott and Antonsen discovered an
invariant attracting manifold for the simple Kuramoto model in
the continuum limit with Cauchy distributed frequencies (Ott
and Antonsen, 2008). It has been shown that on this manifold,
the oscillator density F satisfies the following equation.

F(θ , t) =
1− R2

2π(1− 2Rcos(ψ − θ)+ R2)
(36)

Away from this attracting invariant manifold, the full oscillator
density ρ(θ ,ω, t) obeys the continuity equation

∂ρ(θ ,ω, t)

∂t
+
∂([ω + K

2i (re
−iθ − r∗eiθ )]ρ(θ ,ω, t))

∂θ
= 0 (37)

We would like to use our neural network based approach to
learn equivalent PDEs directly from oscillator density data. As
an example of what this would look like for F(θ , t), one can
approximate the partial derivative of F with respect to time

∂F(θ , t)

∂t
≈

F(θ , t + δt)− F(θ , t)

δt
. (38)

Furthermore, one can numerically obtain the partial derivative of
F with respect to θ . Plotting ∂F

∂t vs. both F and Fθ produces a loop,
as illustrated in Figure 15, where traversing a loop corresponds
to varying θ from 0 to 2π . Each of the different loops depicted in
Figure 15 coincides with a different initial value of R(t), ranging
from 0 to 0.85. Thus, it appears that along the attractingmanifold,
we can write

∂F

∂t
= G

(
F,
∂F

∂θ

)
(39)

where G is an unknown function of F and ∂F
∂θ
. The unknown

function G takes a form that is amenable to being learned with
the PDE extension of the neural network integration procedure.
In future work we intend to demonstrate this process.

FIGURE 15 | (A) Plot of ∂F
∂t

vs. ∂F
∂θ

and F for a variety of θ ∈ [0, 2π ] and initial

R(t) ∈ [0, 0.85] values. Each color corresponds to a different value of R(t), while

traversing a curve of a given color corresponds to θ running from 0 to 2π .

Note that the curves appear to trace out a surface, suggesting that there is an

underlying functional relationship. (B) Surfaces of V as a function of the two

discovered diffusion map coordinates, φ1 and φ2, colored by h and stacked in

time. This stack represents approximately one period of the limit cycle. The

smoothly varying behavior of these surfaces is suggestive of a PDE for V in φ1,

φ2, and time. The black dots are the actual oscillators which were used to

produce the surfaces in φ1 and φ2 by means of a polynomial chaos expansion.

Moving away from simple phase oscillators, we consider a
model of Hodgkin–Huxley neural oscillators studied in (Choi
et al., 2016), which are characterized by two state variables each,
a channel state h and a potential V (40),

C
dVi

dt
= −gNam(Vi)hi(Vi − VNa)− gl(Vi − Vl)+ Iisyn + Iiapp,

dhi

dt
=

h∞(Vi)− hi

τ (Vi)
, (40)

for i = 1, . . . ,N. Where the coupling is provided by the synaptic
current Isyn defined as

Iisyn =
gsyn(Vsyn − Vi)

N

N∑

j=1

Aijs(Vj), (41)

with adjacency matrix Aij. The functions τ (V), h∞(V), andm(V)
are a standard part of the Hodgkin–Huxley formalism, s(V) is
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the synaptic communication function, and gNa, VNa, gl, and Vl

are model parameters.
It has been shown that with a Chung-Lu network (30,

31) these oscillators are drawn to an attractive limit cycle
along which their states can be described by two parameters:
their applied current Iapp and their degree, κ . These two
heterogeneities can also be described by two diffusion map
coordinates, φ1 and φ2 (Kemeth et al., 2018). Plotting the
potential, V , for a single period of the limit cycle produces
the stack of surfaces shown in Figure 15B. The smoothly
varying character of these surfaces is suggestive of a PDE
description of these oscillators along this limit cycle.We intend to
investigate the identification of such a PDE through an extension
of the data-driven identification technique for coarse ODEs
presented herein.
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