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In this paper, the development of local and non-local similarity solutions for laminar flow
and heat transfer between two separated fluids is described. This paper focuses on the
extension of similarity solutions of convective surface boundary condition. This new case
represents two adjacent fluids separated by a flat plate, and moving parallel to each other,
where the convective heat transfer coefficient of the fluid heating the plate on its lower
surface is proportional to x�1=2. Numerical and analytical solutions are available to solve
this boundary value problem. Within the first case, shooting method is applied; further-
more, Runge–Kutta fourth order method is used for integration over the whole boundary
layer. Numerical solutions of the resulting similarity energy equation are represented for
various Prandtl numbers and a range of values of the parameter characterizing the hot fluid
convection process. In addition, analytical exact series solutions are provided for all differ-
ent Prandtl numbers, although for cold fluids with low Prandtl numbers, a compact solu-
tion is also obtained. Finally, an appropriate range of Prandtl number is obtained in
which compact and exact solution have a good agreement.

� 2010 Published by Elsevier B.V.
1. Introduction

Many researches related to the laminar hydrodynamic and thermal boundary layer, have been done. One of the most
important and popular similarity solutions is Blasius equation [1]. Blasius similarity solution gives the velocity distribution
in the hydrodynamic boundary layer by reducing momentum equation to an ordinary differential equation. Many research-
ers have considered different boundary conditions such as constant surface temperature [2], constant heat flux at the plate
[3], different variation of heat flux or surface temperature [4,5], and etc. to give different similarity solutions. Aziz [6] has
demonstrated that a similarity solution is possible for a convective boundary condition at the plate, where the convective
heat transfer of the fluid heating the plate on its lower surface is proportional to x�1=2. Cortell [7] has analyzed the effects
of thermal radiation on the laminar boundary layer about a flat plate in a uniform fluid stream (Blasius flow), and about
a moving plate in a quiescent ambient fluid (Sakiadis flow) both under a convective surface boundary condition.

In this paper, first, we focus on numerical solutions of the resulting thermal similarity equation for laminar flow and heat
transfer between two separated fluids for various Prandtl numbers and a range of values characterizing the hot fluid convec-
tion process. Then, analytical solutions will be presented which consist of two approaches. Exact series solution will be pro-
vided which covers all ranges of Prandtl numbers and different cold or hot fluids; in addition, by means of the error function,
a compact relation will be suggested for low Prandtl-number cold fluids, in order to evaluate the rate of the heat transfer
between hot and cold fluid through the flat plate.
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2. Mathematical analysis

The major convection parameters may be obtained by solving the appropriate form of the boundary layer equations. We
consider the problem of hydrodynamic and thermal boundary layer flows over a flat plate in a stream of the cold fluid at
temperature T1 moving over the top surface of the plate with a uniform velocity U1. Assuming steady, incompressible, lam-
inar flow with constant fluid properties and negligible viscous dissipation, and recognizing that dp

dx ¼ 0, the boundary layer
equations can be written as:

Continuity
@u
@x
þ @m
@y
¼ 0 ð1Þ
Momentum:
u
@u
@x
þ m

@u
@y
¼ m

@2u
@y2 ð2Þ
Energy:
u
@T
@x
þ m

@T
@y
¼ a

@2T
@y2 ð3Þ
where u and v are the x (along the plate) and the y (normal to the plate) components of the velocities, respectively, T is the
temperature, v is the kinematic viscosity of the fluid, and a is the thermal diffusivity of the fluid.

The appropriate hydrodynamic boundary conditions are:
uðx; 0Þ ¼ mðx;0Þ ¼ 0 ð4Þ
Tðx;1Þ ¼ T1 ð5Þ
As mentioned before, the bottom surface of the plate is heated by convection from a hot fluid at temperature Tf which
provides a heat transfer coefficient hf . The boundary conditions at the plate surface and far into the cold fluid may be written
as:
� k
@T
@y
ðx;0Þ ¼ hf ½Tf � Tðx; 0Þ� ð6Þ

Tðx;1Þ ¼ T1 ð7Þ
Now, an independent g variable and a dependent variable f, in terms of the stream function, are introduced as:
g ¼ y
U1
vx

� �1=2

ð8Þ

f ðgÞ ¼ W

U1

ffiffiffiffiffiffiffiffiffiffiffi
vx
U1

� �r ð9Þ
Application of these variables simplifies matters by reducing the partial differential equations, (2) and (3), to the ordinary
differential equations.

Similarly defining a dimensionless temperature h as:
h ¼ T � T1
Tf � T1

ð10Þ
Eqs. (1)–(3) reduce to:
2f 000 þ ff 00 ¼ 0 ð11Þ
h00 þ 1=2Prf h0 ¼ 0 ð12Þ
Here the primes denote differentiation of f with respect to g.
The boundary conditions in terms of the similarity variables are:
f ð0Þ ¼ f 0ð0Þ ¼ 0 ð13Þ
f 0ð1Þ ¼ 1 ð14Þ
h0ð0Þ � a½1� hð0Þ� ð15Þ
hð1Þ ¼ 0 ð16Þ
where



Table 1
Numeri

a

Pr ¼
0.05
0.1
0.2
0.4
0.6
0.8
1
5
10
20

Pr ¼
0.05
0.1
0.2
0.4
0.6
0.8
1
5
10
20

Pr ¼
0.05
0.1
0.2
0.4
0.6
0.8
1
5
10
20

Pr ¼
0.05
0.1
0.2
0.4
0.6
0.8
1
5
10
20
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a ¼ hf

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vx=U1

p
ð17Þ
For the energy equation to have a similarity solution, the quantity a must be a constant and not a function of x. This condition
can be met if the heat transfer coefficient hf is proportional to x�1=2. Now, assume that:
hf ¼ cx�1=2 ð18Þ
After defining a solutions of Eqs. (11)–(16) yield the similarity solutions. With respect to a defined by Eq. (17), the solu-
tions generated are the local similarity solutions.
3. Numerical solutions

Eqs. (11), (13), and (14) constitute the classical Blasius problem which is studied by numerous researchers such as
Cortrell [8].

In this paper, we focus on the solution of the energy equation. In order to approach the goal, the FORTRAN software was
used. The asymptotic boundary conditions equations (14) and (15) g ¼ 1 at were replaced by those at g ¼ 8 in accordance
with standard practice in the boundary layer analysis. Runge–Kutta fourth order method and shooting method were used to
solve the boundary value problem.
cal solutions for temperature variation on the flat plate.

hð0Þ �h0ð0Þ

0:05
0.25969 0.03701566
0.41230 0.05876962
0.58387 0.08322519
0.73727 0.10509216
0.80804 0.11517814
0.84877 0.12098391
0.87524 0.12475713
0.97228 0.13858999
0.98595 0.14053660
0.99292 0.14153102

0:1
0.23879 0.03806060
0.38552 0.06144813
0.55650 0.08870054
0.71506 0.11397451
0.79010 0.12593739
0.83386 0.13291096
0.86252 0.13747868
0.96911 0.15446949
0.98431 0.15689044
0.99209 0.15813069

0:5
0.16153 0.04192336
0.27814 0.07218628
0.43522 0.11295543
0.60649 0.15740470
0.69805 0.18116870
0.75505 0.19596121
0.79394 0.20605591
0.95065 0.24672765
0.97470 0.25297653
0.98719 0.25621367

1
0.13087 0.04345652
0.23145 0.07685508
0.37590 0.12482052
0.54640 0.18143867
0.64374 0.21375873
0.70668 0.23465889
0.75072 0.24928301
0.93772 0.31138042
0.96786 0.32138872
0.98367 0.32664705
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Table 1 shows the results of the problem for fixed Prandtl numbers of 0.05, 0.1, 0.5, and 1. For each Prandtl number, both
hð0Þ and h0ð0Þ increase as a increases.

According to the results, as a!1, the solution approaches the classical solution for the constant surface temperature.
This can be seen from the boundary condition equation (15) which reduces to hð0Þ ¼ 1 as a!1.

By obtaining hð0Þ and h0ð0Þ the Nusselt number and the total heat transfer rate can be gained which will be discussed
later.

It was observed that numerical results of this study are in a good agreement with [6].

4. Analytical solutions

4.1. Case. 1

In order to represent a simple form of analytical solution we refer again to Eq. (12). This equation can be written in this
form:
h00ðgÞ
h0ðgÞ ¼ �

1
2

Prf ð19Þ
From Blasius equation (11):
f ¼ �2
f 000

f 00
ð20Þ
Substitution the right hand side of Eq. (19) into Eq. (20), and some simplifications yield:
h0ðgÞ
h0ðgÞ ¼ Pr

f 000ðgÞ
f 00ðgÞ ð21Þ
Integrating both sides of Eq. (21) from 0 to g gives:
h00ðgÞ
h0ð0Þ ¼

f 000ðgÞ
f 00ð0Þ

� �pr

ð22Þ
Applying boundary condition for h0ð0Þ:
h0ðgÞ ¼ �að1� hð0ÞÞ
f 00ð0Þpr f 00ðgÞpr ð23Þ
Again, integrating both sides of Eq. (23) from 0 to g gives
h0ðgÞ � hð0Þ ¼ �að1� hð0ÞÞ
f 00ð0Þpr

Z g

0
f 00ðnÞpr dn ð24Þ
where, n is a dummy variable of the integration. Noting �að1�hð0ÞÞ
f 00 ð0Þpr is constant, so this term comes out from the integral.

At this point two different approaches are available, in the first approach we do not find hðgÞ directly; the favor quantity is
hð0Þ, and we can find it simply in compact form.

Second approach is analytical solution based on Blasius series solution [1], and next, an approximate analytic solution of
Blasius problem [8], based on Pade approximation and numerical results, were applied to this traditional solution.

4.2. First approach

Second boundary condition is applied, hð1Þ ¼ 0 so by means of g!1 in both sides of Eq. (24).
hð1Þ � hð0Þ ¼ �a½1� hð0Þ�
f 00ð0ÞPr

Z 1

0
f 00ðnÞPr dn ð25Þ
After some simplification, it gives:
hð0Þ ¼ 1� 1

1þ a
f 00 ð0ÞPr

R1
0 f 00ðnÞPr dn

ð26Þ
This is, in fact, the general relation of hð0Þ, for any arbitrary values of a and Pr. In the special case, when the Prandtl num-
ber of the fluid is unity, Eq. (26) gives:
hð0Þ ¼ 1� 1
1þ a

f 00 ð0Þ ½f 0ð1Þ � f 0ð0Þ� ð27Þ
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Applying boundary conditions of Blasius equation, gives:
Table 2
Analytic

a

Pr ¼
0.05
0.1
0.2
0.4
0.6
0.8
1
5
10
20

Pr ¼
0.05
0.1
0.2
0.4
0.6
0.8
1
5
10
20

Pr ¼
0.05
0.1
0.2
0.4
0.6
0.8
1
5
10
20

Pr ¼
0.05
0.1
0.2
0.4
0.6
0.8
1
5
10
20
hð0Þ ¼ 1� f 00ð0Þ
aþ f 00ð0Þ ð28Þ
f 00ð0Þ may be found by Howarth correct to five decimals position, numerically as f 00ð0Þ ¼ 0:33206, this relation can be com-
pared with numerical results for Pr ¼ 1 and different values of a in Table 2 In the above table, h0ð0Þwas found simply by (15).

According to numerical and analytical solutions it can be observed that these results agree up to four places of decimal.
Now, the temperature distribution on the flat plate for various values of parameter a will be shown which is character-

izing the convection process of the hot fluid heating the plate on its lower surface.
Solutions of the similarity solution for numerical approaches for a fixed Prandtl number of 0.72 can be met in [6]. As it can

be met, hð0Þ ! 1 as a increases, and the solution approaches the classical constant-temperature flat plate problem
ðTðx;0Þ ¼ Tf Þ. Finally, it may be realized that as a!1 then both hð0Þ and �h0ð0Þ increase, so the heat flux and heat transfer
rate increase seriously. Thus this case is appropriate to enhance the heat flux and heat transfer between two separated fluids.

Dimensionless temperature versus Prandtl number has been shown in Fig. 1. According to this figure by decreasing the
Prandtl number of the cold fluid i.e. highly conductive fluids, the temperature of the plate approaches the hot-fluid temper-
ature ðTf Þ for smaller magnitudes of parameter a. Note that for fixed cold fluid properties and fixed free stream velocity, a at
any location x is proportional to the heat transfer coefficient associated with the hot fluid ðhf Þ, so small values of a mean
lower heat transfer rate between the hot and cold fluid.
al solutions for variation of temperature on the flat plate.

hð0Þ �h0ð0Þ

0:05
0.25969 0.03701566
0.41230 0.05876962
0.58387 0.08322519
0.73727 0.10509216
0.80804 0.11517814
0.84877 0.12098391
0.87524 0.12475713
0.97228 0.13858999
0.98595 0.14053660
0.99292 0.14153102

0:1
0.23879 0.03806060
0.38552 0.06144813
0.55650 0.08870054
0.71506 0.11397451
0.79010 0.12593739
0.83386 0.13291096
0.86252 0.13747868
0.96911 0.15446949
0.98431 0.15689044
0.99209 0.15813069

0:5
0.16153 0.04192336
0.27814 0.07218628
0.43522 0.11295543
0.60649 0.15740470
0.69805 0.18116870
0.75505 0.19596121
0.79394 0.20605591
0.95065 0.24672765
0.97470 0.25297653
0.98719 0.25621367

1
0.13087 0.04345652
0.23145 0.07685508
0.37590 0.12482052
0.54640 0.18143867
0.64374 0.21375873
0.70668 0.23465889
0.75072 0.24928301
0.93772 0.31138042
0.96786 0.32138872
0.98367 0.32664705



Fig. 1. Dimensionless temperature versus parameter a for various fluids with different Prandtl numbers.

3970 H. Shokouhmand et al. / Commun Nonlinear Sci Numer Simulat 15 (2010) 3965–3973
4.3. Second approach

In the second approach, Blasius series solution [1] is used to compute the right hand side of Eq. (26). From Blasius
solution:
f ðgÞ ¼
X1
k¼0

�1
2

� �k Akf 00ð0Þkþ1

ð3kþ 2Þ! g3kþ2 ð29Þ
where A0 ¼ A1 ¼ 1 and
Ak ¼
Xk�1

0

3k� 1
3r

� �
ArAk�r�1; k P 2 ð30Þ
So
f 00ðgÞ ¼
X1

0

�1
2

� �k Akf 00ð0Þkþ1

ð3kÞ! g3k ð31Þ
With substituting Eq. (31) into (27) the general solution of hð0Þ can be found.
hð0Þ ¼ 1� 1

1þ a
f 00 ð0ÞPr

R1
0

P1
k¼0

�1
2

	 
k Akf 00ð0Þkþ1

ð3kÞ! g3k
� �Pr

dg
ð32Þ
In spite of the presence of ð3kþ 1Þ! in the denominator of Blasius series solution, the above series converges only within a
finite integral ½0;gmax� where, gmax ¼ 1:8894

f 00 ð0Þ , but [9] has proposed approximate analytical solution for f 0ðgÞ as:
f 0ðgÞ ¼
0:332057g þ 0:000590694

g þ 0:00000288g5 expðg2=4� 1ÞÞ
1þ 0:008696743

g þ 0:0000028885
g expðg2=4� 1Þ

ð33Þ
The above suggestion will hold in the whole domain ½0;1Þ for g.
We can take derivative from Eq. (33) and put it to Eq. (27) to take the integral analytically, but it is very complicated.

4.4. Case. 2

It is still better to develop an analytical replacement for the highly conductive fluids. For this type of fluids the velocity
boundary layer is much thinner than the thermal layer. Therefore, in this limit it is permissible to set f 0 ¼ 1 in the region
occupied by the thermal boundary layer. Differentiating equation (12) once:
d
dg

h00

h0

� �
¼ � Pr

2
f 0 ð34Þ
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This equation leads to an explicit solution for hðgÞ as Pr ! 0.
d
h00

h0

� �
¼ �1

2
Prf 0 dg ð35Þ
Integrating Eq. (35)
h00ðgÞ
h0ðgÞ �

h00ð0Þ
h0ð0Þ ¼ �

Pr
2

g ð36Þ
According to Eq. (12)
h00ð0Þ þ 1
2

Prf ð0Þh0ð0Þ ¼ 0 ð37Þ
So,
h00ð0Þ ¼ 0 ð38Þ
Substituting Eq. (38) into (36), and integrating once
h0ðgÞ ¼ h0ð0Þ exp � Pr
4

g2
� �

ð39Þ
According to the boundary conditions
h0ð0Þ ¼ �a½1� hð0Þ� ð40Þ
By substituting Eq. (40) into (39), and integrating
hðgÞ � hð0Þ ¼ �a½1� hð0Þ�
ffiffiffiffiffi
p
Pr

r
erfðxÞ ð41Þ
where, x is a function of and defined as
x ¼
ffiffiffiffiffi
Pr
2

r
g ð42Þ
Now, if g!1 then Eq. (41) reduces to
hð0Þ ¼
a
ffiffiffiffip
Pr

p
erf

ffiffiffiffi
Pr
p

2 g
� �

1þ a
ffiffiffiffiffiffiffiffiffiffiffi
p=Pr

p
erf

ffiffiffiffi
Pr
p

2 g
� � ð43Þ
In this case, Pr ! 0, and for high numbers of parameter a; hð0Þ ! 1 and h0ð0Þ ! 0, so heat transfer reduces seriously;
therefore, this condition renders liquid metals unattractive as coolants in applications requiring high heat transfer rate.

The Nusselt number and the total heat transfer rate q can be expressed in terms of h0ð0Þ as follows:
Nu ¼ � Tf � T1
T � T1

� � ffiffiffiffiffiffiffiffiffiffi
U1x
m

r
h0ð0Þ ð44Þ

q ¼ �2kWðTf � T1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U1L
m

� �s
h0ð0Þ ð45Þ
where, a is a constant.
q ¼ �kWLðTf � T1Þ
ffiffiffiffiffiffiffi
U1
m

r Z L

0
x�

1
2h0ð0Þdx ð46Þ
where, a is a function of x.
In Eqs. (44)–(46), L is the plate length and W is the plate width. It should be noted for the case (a = a function of x), h0ð0Þ

depends on x. Thus integration over the entire plate is necessary to obtain the total heat transfer rate. In addition, after gain-
ing the approximate compact relation, it is compared with exact solution. Figs. 2–4 represent this comparison for various
Prandtl numbers: 0.001, 0.01, 0.05, 0.1, 0.5 and 1. According to these figures the discrepancy between exact and approximate
solutions decreases as parameter a increases; in this case hð0Þ approaches 1 as a increases mutually according to Eq. (15),
h0ð0Þ approaches 0, so heat transfer between separated fluids reduces seriously. Note that when Pr number increases the dis-
crepancy between the exact and approximate solution (compact formula) increases, as we expected; as a matter of fact, this
happens because the compact relation is exact for the case of Pr ! 0. In order to find appropriate range of Pr number, exact
and approximate solutions are compared for 0:001 6 Pr 6 1.

According to these figures, it may be concluded that the compact solution can be used for Pr 6 0:1. In this case the dis-
crepancy between the exact and approximate solutions is very small.



Fig. 2. Comparison of exact and approximate solutions for (a): Pr ¼ 0:001 and (b): Pr ¼ 0:01.

Fig. 3. Comparison of exact and approximate solutions for (a): Pr ¼ 0:05 and (b): Pr ¼ 0:1.

Fig. 4. Comparison of exact and approximate solutions for (a): Pr ¼ 0:5 and (b): Pr ¼ 1.
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5. Conclusion

A similarity solution for the laminar flow and heat transfer between two separated fluids is possible if the convective heat
transfer of the fluid heating the plate on its lower surface is proportional to x�1=2. Numerical solutions of the resulting ther-
mal similarity equation reported for four representative Prandtl numbers of 0.05, 0.1, 0.5, and 1. Then, analytical solutions
expressed which consisted of two cases. Case. 1 solved the problem by means of series solution which is exact for all ranges
of Prandtl numbers. Case. 2 represented compact formula for highly conductive cold fluids. Relations to evaluate the Nusselt
number and total heat transfer rate were suggested; in addition, exact and approximate solutions were compared in order to
obtain the discrepancy between results. Finally, appropriate range of Prandtl number was evaluated for proper application of
the approximate solution.
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