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Novel tool to quantify with single-cell resolution the number of
incoming AAV genomes co-expressed in the mouse nervous
system
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Adeno-associated viral (AAV) vectors are an established and safe gene delivery tool to target the nervous system. However, the
payload capacity of <4.9 kb limits the transfer of large or multiple genes. Oversized payloads could be delivered by fragmenting the
transgenes into separate AAV capsids that are then mixed. This strategy could increase the AAV cargo capacity to treat monogenic,
polygenic diseases and comorbidities only if controlled co-expression of multiple AAV capsids is achieved on each transduced cell.
We developed a tool to quantify the number of incoming AAV genomes that are co-expressed in the nervous system with single-
cell resolution. By using an isogenic mix of three AAVs each expressing single fluorescent reporters, we determined that expression
of much greater than 31 AAV genomes per neuron in vitro and 20 genomes per neuron in vivo is obtained across different brain
regions including anterior cingulate, prefrontal, somatomotor and somatosensory cortex areas, and cerebellar lobule VI. Our results
demonstrate that multiple AAV vectors containing different transgenes or transgene fragments, can efficiently co-express in the
same neuron. This tool can be used to design and improve AAV-based interrogation of neuronal circuits, map brain connectivity,
and treat genetic diseases affecting the nervous system.

Gene Therapy; https://doi.org/10.1038/s41434-021-00272-8

INTRODUCTION
AAV-based gene therapies are well established to treat inherited and
acquired diseases with known nonfunctional or dysfunctional gene
products [1]. In addition, AAV vectors are essential tools in
neuroscience research to identify and manipulate neuronal circuits
in animal models. AAV vectors are typically used to trace cell circuits,
measure neuronal dynamics such as intracellular levels of calcium
(GCaMP), glutamate (iGluSnFR), γ-aminobutyric acid (iGABASnFR) and
dopamine (dLight) among other applications. Furthermore, precise,
conditional spatiotemporal nerve circuit manipulation leading to the
understanding of complex biological behaviors is now possible with
in vivo AAV-based delivery of chemogenetic (DREADD) and
optogenetic (channelrhodopsins) tools [2, 3]. Three AAV-based gene
therapies are already approved, and a significant number are in phase
III clinical trial [1, 4, 5]. Recombinant AAV vectors provide efficient
gene transfer, broad serotype-dependent tropism, low risk of
insertional mutagenesis, and long-term transgene expression in
transduced cells [1]. However, the packaging capacity (<4.9 Kb)
hinders the delivery of large payloads for neuroscience research and
the treatment of diseases caused by mutations in large or multiple
genes [5, 6]. Therefore, AAV vectors are not ideal to treat (i) disorders
caused by mutations in single-oversized genes such as Duchenne
muscular dystrophy, retinopathies and deafness [7–9]; (ii) non-
monogenic disorders such as Parkinson’s disease, multiple sclerosis
and cancer, and non-genetic causes such as HIV/AIDS [4, 10]; and (iii)
comorbidities such as age-related diseases (obesity, diabetes, kidney

and heart failure) [11]. Different strategies have been developed to
deliver large transgenes with AAVs such as the use of small gene
promoters and regulatory elements [12]. An alternative approach to
deliver oversized genes consists of splitting the transgenes into
multiple smaller fragments that are packaged into separate AAV
capsids [6, 7]. These fragments combined could potentially recon-
stitute the full-length gene in the target cell by trans-splicing or
homologous recombination between overlapping sequences [6]. Co-
administration of AAV mixtures has been assessed to treat non-
monogenic diseases and comorbidities affecting brain, spinal cord,
heart and kidney [10, 11, 13]. Transgene expression relies on the
number of vector genome-containing particles (VGP) required for
transduction, a factor that can vary between 25 and several hundred
for different cell-types and AAV serotypes [14]. VGP is affected by rate-
limiting factors including capsid entry, endosomal escape, nuclear
transport, capsid uncoating and second-strand synthesis of single-
stranded genomes [14, 15]. Self-complementary AAV (scAAV) vectors
avoid the second strand synthesis bottleneck, but further reduce in
half the already limited packaging capacity. Kobiler and collaborators
developed a method to determine the number of incoming
alphaherpesvirus genomes able to express in infected cells in vitro
[16]. The authors used a mixture of three fluorescent pseudorabies
virus (PRV) recombinants and assumed that viral gene expression is
best represented as a Poisson probability. They determined that the
maximal average number of PRV genomes expressed in each infected
cell (Poisson random variable defined as Lambda (λ)), was
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approximately 7, thus confirming the presence of multiple bottle-
necks during PRV infection [16]. Similarly, studies on human
immunodeficiency virus (HIV), showed a multiplicity of infection
(MOI) of 3-4 viral copies per cell during coinfection by cell-free virus
that like PRV, followed a random Poisson distribution [17]. Moreover, it
has been shown that high MOI with HIV can lead to massive
recombination events that help to recover from deleterious viral
mutations and relentless bottlenecks while simultaneously increasing
immune recognition by infected cells [18]. In line with these studies in
PRV and HIV, we aimed to determine λ for AAV in neurons to facilitate
functional studies of the nervous system and increase the success rate
of AAV-based gene therapies.

RESULTS AND DISCUSSION
Here, we quantified with single-cell resolution, the number of
incoming viral genomes expressed in neurons in vitro and in vivo
after co-transduction with three isogenic AAV vectors, each
expressing different fluorescent proteins. The AAV mix was used
to probe the number of cells expressing three, two, one, or zero
fluorescent reporter. AAV-PHP.eB, an engineered capsid variant,
derived from serotype 2/9, was selected for this study due to the
pan-neuronal tropism [12, 19]. Primary superior cervical ganglia
(SCG) neuronal cultures were transduced with an equimolar
mixture of AAV-EGFP, AAV-mCherry and AAV-mTurquoise2
(mTurq2) (1:1:1 ratio) at doses ranging from 1 × 1010 to 5 × 1011

vector genomes per dish (vg/dish) for 7 days (n= 3 per viral dose)
(Fig. 1). The same vector mix was then stereotaxically injected into
five different brain areas of adult mice including anterior cingulate,
prefrontal, somatomotor and somatosensory cortex, and cerebellar
lobule VI. Mice were sacrificed at 30 days post injection (dpi) and
EGFP, mCherry, mTurq2 labeled cells were clearly identified around
the injection sites (Fig. 1).

At both, the 5 × 1010 and the 5 × 1011 AAV vg/dish doses, all the
SCG neurons in the dish showed intense fluorescent reporter
expression. That was not the case for the lower dose of 1 × 1010

vg/dish. We counted the number of cells expressing three, two, one,
or zero fluorescent reporters with single-cell resolution. Notably, the
expression of all three reporter genes colocalized in a significant
proportion of the transduced neurons in a dose-dependent fashion
(yellow squares, n= 3 per area) (Fig. 2A–C). Single or double-labeled
cells corresponded to less than 10% of the cells quantified, whereas
no fluorescent label (zero positive) was detected in less than 1% of
the neurons for all viral doses (Table 1). The number of neurons
expressing all three reporters reached 100% at 5 × 1011 vg/dish and
no cells with zero-, one- and two-colors were observed (Table 1).
Therefore, the λ value at the highest viral dose was singular (λ→∞).
To obtain a lower bound on λ, we used simple inference for cells with
two-colors based on the measurements for lower viral doses. The
extrapolation of the two-color counts estimated that λ was much
greater than 31 (λ ≫ 31) (Table 1). These results further demonstrate
that despite the bottlenecks affecting transgene expression, very high
transduction efficiency can be achieved. Next, we performed
stereotactic AAV brain injections to assess the in vivo AAV co-
transduction efficiency. As shown in Fig. 3, significant neuronal co-
expression of all three reporters was observed in every brain area
tested (n= 3). The vast majority of transduced cells corresponded to
neurons that co-labeled with a pan-neuronal marker (Fig. 3 A4, B4, C4,
D4, E4). To determine the transduction efficiency for each brain area,
the relative fluorescence intensity of more than 3900 neurons across
six tissue sections was obtained (Table 2). Each blue dot depicted in
the ternary plots, correspond to the percentage values for each
reporter gene in which the fluorescent intensity can be found by
projecting the dot to the respective triangle edge (axis) (Fig. 3F1-5).
We observed equal distribution for all three colors, scattering around
the center of the ternary plot. Only a small proportion of cells showed

Fig. 1 Co-transduction with a fluorescent AAV mixture to estimate the number of incoming genomes co-expressed in neurons in vitro
and in vivo. SCG primary neuronal cultures in vitro and mouse brain tissue in vivo were co-transduced with triple AAV mixtures either directly
(SCG) or by stereotactic injection in anterior cingulate cortex (ACC), somatomotor cortex (MC), prefrontal cortex (PFC), somatosensory cortex
(SSC) and cerebellar lobule VI (VI). Representative confocal images show EGFP, mCherry and mTurquoise2 (mTurq2) fluorescence in SCG
neurons at 7 days post AAV transduction (5 × 1011 vg/dish), and coronal brain sections at 30 days post AAV injections (400 nl per each brain
region, 1.2 x 1013 vg/ml). Figure created with BioRender.com.
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single or double reporter signal. Moreover, we depicted the
probability density functions (PDFs), which further confirmed that
areas near the brain injection site contained all three fluorescent
reporters in equal proportion, each peaking at ~33% in the color
mixture percentage (Fig. 3G1-G5). As shown in Table 2, the
percentage of brain neurons expressing one or two colors was less
than 1%, while neurons with zero color were not observed. Over 99%
of the neurons analyzed, showed expression of all three reporters,
with an average λ value of ~20 for all brain areas (Table 2). Our
findings confirm that a single viral dose containing a mixture of AAV
capsids can achieve high co-transduction efficiency both in vitro and
in vivo. Consequently, it is safe to assume that AAV vectors can
efficiently and simultaneously co-deliver three or more transgenes to
study and manipulate the nervous system or treat diseases. Thus, we
provide a tool to precisely determine the degree of AAV transduction
and transgene expression with single-cell resolution in the nervous
system. This tool can be used for the design and optimization of AAV-
based gene therapies. Future studies may build on the quantitative
data presented here to expand both basic research and therapeutic
applications with AAV vectors not only in the brain but also in other
organs to deliver either multiple or very large transgenes.

MATERIALS AND METHODS
Construction of AAV Vectors
AAV plasmids containing EGFP, mCherry and mTurq2, driven by the CMV
promoter and terminated with SV40 polyA signal were produced by the PNI
Viral Core Facility (Princeton Neuroscience Institute, Princeton University). AAV
plasmids were produced by either restriction-enzyme cloning, or Gibson
assembly. DNA synthesis was provided by GenScript (Piscataway, NJ, USA). AAV

plasmids were packaged into AAV serotype PHP.eB as previously described
[12, 19]. Fluorescent proteins were fused to the 27 bp triple tandem nuclear
localization signal (NLS) derived from human c-myc. All three AAV plasmids
generated in this study are publicly available on www.addgene.org under
accession numbers 165441, 165442, and 165443 respectively.

Animals
Pregnant Sprague-Dawley rats (n= 3) (Hilltop Labs Animals, Scottdale, PA,
USA), were used for SCG isolation and culture in vitro. Four-week-old male
C57BL/6 J mice (n= 4) were obtained from The Jackson Laboratory (Bar
Harbor, ME, USA) for the in vivo experiments. All mice were raised on a 12-
h light/dark cycle (lights on at 7:00 am) with ad libitum food and water.
Special care was taken to minimize suffering and to reduce the number of
animals used to the minimum required for statistical inference. Protocols
were approved by the Princeton University Institutional Animal Care and
Use Committee (protocols 1943-19 and 1947-19).

SCG neuron culture and AAV transduction
SCG neuronal cultures were obtained from rat embryos as previously described
[12]. SCG neurons were cultured for 10 days prior to triple AAV transduction
with an equimolar mixture of 1 × 1010, 5 × 1010 and 5 × 1011 vg/dish. Seven
days post transduction, neurons were fixed and imaged in a Nikon Ti-E
inverted epifluorescence microscope (Nikon Instruments, Tokyo, Japan), with a
CoolSNAP ES2 camera (Photometrics, Tucson, AZ, USA) and the Nikon NIS-
Elements software.

Mouse surgery and AAV injection
Mice were anesthetized with isoflurane inhalation (5% isoflurane in O2 for
induction and 1-2% for maintenance) and placed in a stereotaxic apparatus
(Kopf Model 1900, David Kopf Instruments, Tujunga, CA, USA). For stereotactic
intracranial brain injections, a midline incision was made followed by

Table 1. Estimation of the maximal number of incoming AAV genomes expressed in transduced neurons in vitro (λ).

Infectious dose (vg/dish) Zero-color (%) One-color (%) Two-color (%) Three-color (%) Total λ

1 × 1010 14 (0.80 %) 77 (4.40 %) 184 (10.51 %) 1475 (84.29 %) 1750 7.9

5 × 1010 5 (0.28 %) 9 (0.51%) 52 (2.93 %) 1707 (96.28 %) 1773 12.4

5 × 1011 0 (0.00 %) 0 (0.00 %) 0 (0.00 %) 1791 (100 %) 1791 ≫ 31

Fig. 2 Co-transduction of primary SCG neurons with a fluorescent AAV mixture. SCG neurons were co-transduced with 1 × 1010, 5 × 1010

and 5 × 1011 AAV vg/dish. Fluorescent reporter expression was measured in three regions per cultured dish (yellow squares) for: (A1, B1, C1)
EGFP, (A2, B2, C2) mCherry, (A3, B3, C3) mTurq2, and (A4, B4, C4) bright field respectively (n = 3). Scale bar, 100 µm.
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Fig. 3 Mouse brain co-transduction with AAV mixtures. A–E Fluorescent reporter profile of neurons in different brain areas: (A1, B1, C1, D1,
E1) EGFP, (A2, B2, C2, D2, E2) mCherry and (A3, B3, C3, D3, E3) mTurq2. (A 1-5) ACC, (B 1-5) MC, (C 1-5) PFC, (D 1-5) SSC and (E 1-5) VI. (A4, B4, C4,
D4, E4) Depict labeling with the pan-neuronal marker NeuroTrace. (A5, B5, C5, D5, E5) Show merge of all channels (white signal). Yellow
squares depict regions considered for post-processing (n = 3). Scale bar, 50 μm. Smaller white squares, show higher magnification insets.
(F 1–5) Show ternary plots containing the color spectrum of >3900 cells (blue dots) for each brain area. Cells with one- and two-colors are
represented by blue dots at the vertices and edges respectively while cells containing mixtures of all three fluorescent reporters are blue dots
located inside the triangle. (G 1–5) Quantitative representation of the cell color distribution is depicted as probability density functions (PDF)
for each brain region shown in F1–F5 respectively.
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craniotomies with a 0.5mm micro-drill burr (Fine Science Tools, North
Vancouver, Canada). Bilateral injections containing 400 nl of the AAV mixture
per brain region (1.2 x 1013 vg/ml) were made in coordinates (mm), PFC- AP:+
1.8, ML: 0.0, DV:− 2.5; ACC- AP:+ 0.8, ML:+ 0.35, DV:− 1.5; SSC- AP:− 0.9, ML:
− 2.0, DV:− 1.5 and unilateral injection in Lobule VI- AP:− 6.96, ML: 0.0, DV:
−0.5, with borosilicate glass capillaries with an outer diameter of 1mm and an
internal diameter of 0.58mm (World Precision Instruments, Sarasota, FL, USA).
These were pilled using the Sutter Micropipette Puller (Model P-2000, Sutter
Instrument Company, Novato, CA, USA) and beveled at a 45-degree angle.
Craniotomies and skin were sutured, and animals were sacrificed 30 days post
injection (dpi) with ketamine (400mg/kg)/xylazine (50mg/kg) followed by
intraperitoneal 4% PFA perfusion.

Brain processing
Brains were post-fixed with 4% PFA for 2 h at RT and infiltrated with increasing
concentrations of sucrose as previously described [12]. Brains were divided into
two parts, right hemispheres were coronally sectioned and left hemispheres
were sagittally sectioned at 50 µm using a Leica VT1200 vibratome (Leica
Microsystems, Wetzlar, Germany). Brain free-floating sections were permeabi-
lized with 0.5 % Triton X-100 in PBS and incubated in 1:300 NeuroTrace 640/
660 deep-red fluorescent Nissl stain (Molecular Probes, Eugene, OR, USA), in
PBS containing 0.5 % Triton X-100 for 4 h. Nuclei were counter-stained with 0.5
mg/mL DAPI (Thermo Fisher Scientific, Rockford, IL, USA) and mounted in
Vectashield Vibrance antifade mounting media (Vector Laboratories, Burlin-
game, CA, USA). Sections were analyzed with a Leica SP8-LSCM confocal
microscope (Leica Microsystems, Wetzlar, Germany) with a 20X objective and
0.5 μm z steps. Z-stacks were generated with the ImageJ software [20].

Image analysis
To measure the number of AAV genomes expressed in neurons in vitro, at
least 1,750 SCG cells obtained from three replicate dishes per viral dose,
were analyzed. Three random image areas were selected for each SCG
cultured dish and approximately 200 cells were analyzed for each area. For
the in vivo brain experiments, 500 pixel2 regions within each AAV-
transduced area were selected. At least 250 cells were analyzed for each of
the six tissue sections collected per animal for a total of more than 3,900
cells analyzed per brain region and a total of 21,805 cells analyzed for all
brain regions. Cells were selected by drawing a region of interest (ROI) in
the bright field or NeuroTrace channel and normalized to the background
intensity of non-fluorescent cells as previously described [16]. Briefly, the
relative fluorescence intensity of each ROI was determined with the
following formula: corrected total cell fluorescence = integrated density -
([area of selected cell] x [mean fluorescence of background readings]) [21].
Assuming a Poisson distribution, we estimated the average number of

expressed genomes in each cell as:

λ ¼ �3 ln 1� r1 þ 2r2 þ 3r2
3 r0 þ r1 þ r2 þ r3ð Þ

� �

where, r0, r1, r2 and r3 correspond to zero-, single-, double- and triple-colored
cells respectively [16]. For post-processing and visualization analyzes, Python
3.7 standard libraries and python-ternary were used [22].
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Table 2. Estimation of the maximal number of incoming AAV genomes expressed in transduced neurons in vivo (λ).

Brain area Zero-color (%) One-color (%) Two-color (%) Three-color (%) Total λ

Anterior cingulate cortex 0 (0.00%) 0 (0.00%) 20 (0.50%) 3948 (99.50%) 3968 19.2

Somatomotor cortex 0 (0.00%) 7 (0.16%) 12 (0.28%) 4319 (99.56%) 4338 18.6

Prefrontal cortex 0 (0.00%) 3 (0.07%) 13 (0.29%) 4443 (99.64%) 4459 19.7

Somatosensory cortex 0 (0.00%) 5 (0.1%) 7 (0.15%) 4712 (99.75%) 4724 20.2

Cerebellar lobule VI 0 (0.00%) 4 (0.09%) 15 (0.35%) 4397 (99.56%) 4316 19.0
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