About
Experience
Publications
Tags
Light
Dark
Automatic
Machine Learning
Characterization of partial wetting by CMAS droplets using multiphase many-body dissipative particle dynamics and data-driven discovery based on PINNs
The molten sand that is a mixture of calcia, magnesia, alumina and silicate, known as CMAS, is characterized by its high viscosity, …
Elham Kiyani
,
Mahdi Kooshkbaghi
,
Khemraj Shukla
,
Rahul Babu Koneru
,
Zhen Li
,
Luis Bravo
,
Anindya Ghoshal
,
George Em Karniadakis
,
Mikko Karttunen
PDF
Cite
DOI
Machine-learning-based data-driven discovery of nonlinear phase-field dynamics
One of the main questions regarding complex systems at large scales concerns the effective interactions and driving forces that emerge …
Elham Kiyani
,
Steven Silber
,
Mahdi Kooshkbaghi
,
Mikko Karttunen
PDF
Cite
DOI
On the parameter combinations that matter and on those that do not: data-driven studies of parameter (non)identifiability
We present a data-driven approach to characterizing nonidentifiability of a model’s parameters and illustrate it through dynamic as …
Nikolaos Evangelou
,
Noah J. Wichrowski
,
George A. Kevrekidis
,
Felix Dietrich
,
Mahdi Kooshkbaghi
,
Sarah McFann
,
Ioannis G. Kevrekidis
PDF
Cite
DOI
MAVE-NN: learning genotype-phenotype maps from multiplex assays of variant effect
Multiplex assays of variant effect (MAVEs) are a family of methods that includes deep mutational scanning experiments on proteins and …
Ammar Tareen
,
Mahdi Kooshkbaghi
,
Anna Posfai
,
William T. Ireland
,
David M. McCandlish
,
Justin B. Kinney
PDF
Cite
Code
Project
DOI
Periodicity Scoring of Time Series Encodes Dynamical Behavior of the Tumor Suppressor p53
In this paper we analyze the dynamical behavior of the tumor suppressor protein p53, an essential player in the cellular stress …
Caroline Moosmüller
,
Christopher J. Tralie
,
Mahdi Kooshkbaghi
,
Zehor Belkhatir
,
Maryam Pouryahya
,
José Reyes
,
Joseph O Deasy
,
Allen R. Tannenbaum
,
Ioannis G. Kevrekidis
PDF
Cite
DOI
Emergent spaces for coupled oscillators
Systems of coupled dynamical units (e.g., oscillators or neurons) are known to exhibit complex, emergent behaviors that may be …
Thomas N. Thiem
,
Mahdi Kooshkbaghi
,
Tom Bertalan
,
Carlo R. Liang
,
Ioannis G. Kevrekidis
PDF
Cite
DOI
Manifold learning for organizing unstructured sets of process observations
Data mining is routinely used to organize ensembles of short temporal observations so as to reconstruct useful, low-dimensional …
Felix Dietrich
,
Mahdi Kooshkbaghi
,
Erik M. Bolt
,
Ioannis G. Kevrekidis
PDF
Cite
DOI
Coarse-scale PDEs from fine-scale observations via machine learning
Complex spatiotemporal dynamics of physicochemical processes are often modeled at a microscopic level (through, e.g., atomistic, …
Seungjoon Lee
,
Mahdi Kooshkbaghi
,
Konstantinos Spiliotis
,
Constantinos I. Siettos
,
Ioannis G. Kevrekidis
PDF
Cite
DOI
Manifold learning for parameter reduction
Large scale dynamical systems (e.g. many nonlinear coupled differential equations) can often be summarized in terms of only a few state …
Alexander Holiday
,
Mahdi Kooshkbaghi
,
Juan M. Bello-Rivas
,
C. William Gear
,
Antonios Zagaris
,
Ioannis G. Kevrekidis
PDF
Cite
DOI
Cite
×